Insights into Chemical and Structural Order at Planar Defects in Pb2MgWO6 Using Multislice Electron Ptychography

Menglin Zhu, Michael Xu, Yu Yun, Liyan Wu, Or Shafir, Colin Gilgenbach, Lane W. Martin, Ilya Grinberg, Jonathan E. Spanier, James M. LeBeau

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

Switchable order parameters in ferroic materials are essential for functional electronic devices, yet disruptions of the ordering can take the form of planar boundaries or defects that exhibit distinct properties from the bulk, such as electrical (polar) or magnetic (spin) response. Characterizing the structure of these boundaries is challenging due to their confined size and three-dimensional (3D) nature. Here, a chemical antiphase boundary in the highly ordered double perovskite Pb2MgWO6 is investigated using multislice electron ptychography. The boundary is revealed to be inclined along the electron beam direction with a finite width of chemical intermixing. Additionally, regions at and near the boundary exhibit antiferroelectric-like displacements, contrasting with the predominantly paraelectric matrix. Spatial statistics and density functional theory (DFT) calculations further indicate that despite their higher energy, chemical antiphase boundaries (APBs) form due to kinetic constraints during growth, with extended antiferroelectric-like distortions induced by the chemically frustrated environment in the proximity of the boundary. The three-dimensional imaging reveals the interplay between local chemistry and the polar environment, elucidating the role of antiphase boundaries and their associated confined structural distortions and offering opportunities for engineering ferroic thin films.

Original languageEnglish
Pages (from-to)5568-5576
Number of pages9
JournalACS Nano
Volume19
Issue number5
DOIs
StatePublished - 11 Feb 2025

Bibliographical note

Publisher Copyright:
© 2025 American Chemical Society.

Keywords

  • antiferroelectric
  • multislice electron ptychography
  • order−disorder
  • paraelectric
  • scanning transmission electron microscopy

Fingerprint

Dive into the research topics of 'Insights into Chemical and Structural Order at Planar Defects in Pb2MgWO6 Using Multislice Electron Ptychography'. Together they form a unique fingerprint.

Cite this