TY - JOUR
T1 - Initially separated reaction-diffusion systems
AU - Taitelbaum, Haim
AU - Vilensky, Baruch
AU - Koo, Yong Eun Lee
AU - Yen, Andrew
AU - Lin, Anna
AU - Kopelman, Raoul
PY - 1995
Y1 - 1995
N2 - Characteristics of the A + B → C reaction-diffusion system with initially separated components are studied theoretically and experimentally. When the reaction is slow, the two species will mix before reacting. This leads to a series of crossovers from a rich initial behavior to an asymptotic time behavior. The crossovers depend on the system parameters, such as the diffusion coefficients and initial densities of the two species. In this paper we review our recent studies on this system. We elaborate on a theoretical study of momentum effects, and then focus on theoretical explanations of two experimental phenomena: 1) Non-universal and non-monotonic motion of the reaction front center. The latter occurs when one of the reactants has larger diffusion coefficient but smaller initial density. 2) Existence of more than one front. This occurs when two different transformations of the same reactant (on one of the sides of the system), react with the reactant on the other side with a different reaction constant - the majority slowly, but the minority much faster.
AB - Characteristics of the A + B → C reaction-diffusion system with initially separated components are studied theoretically and experimentally. When the reaction is slow, the two species will mix before reacting. This leads to a series of crossovers from a rich initial behavior to an asymptotic time behavior. The crossovers depend on the system parameters, such as the diffusion coefficients and initial densities of the two species. In this paper we review our recent studies on this system. We elaborate on a theoretical study of momentum effects, and then focus on theoretical explanations of two experimental phenomena: 1) Non-universal and non-monotonic motion of the reaction front center. The latter occurs when one of the reactants has larger diffusion coefficient but smaller initial density. 2) Existence of more than one front. This occurs when two different transformations of the same reactant (on one of the sides of the system), react with the reactant on the other side with a different reaction constant - the majority slowly, but the minority much faster.
UR - http://www.scopus.com/inward/record.url?scp=0029228684&partnerID=8YFLogxK
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.conferencearticle???
AN - SCOPUS:0029228684
SN - 0272-9172
VL - 366
SP - 451
EP - 462
JO - Materials Research Society Symposium - Proceedings
JF - Materials Research Society Symposium - Proceedings
T2 - Proceedings of the 1994 MRS Fall Meeting
Y2 - 28 November 1994 through 1 December 1994
ER -