TY - JOUR
T1 - Indoline-3-propionate and 3-aminopropyl carbamates reduce lung injury and pro-inflammatory cytokines induced in mice by LPS
AU - Finkin-Groner, E.
AU - Moradov, D.
AU - Shifrin, H.
AU - Bejar, C.
AU - Nudelman, A.
AU - Weinstock, Marta
N1 - Publisher Copyright:
© 2014 The British Pharmacological Society.
PY - 2015/2
Y1 - 2015/2
N2 - BACKGROUND AND PURPOSE: In the search for safer and effective anti-inflammatory agents, we investigated the effect of methyl indoline-3-propionate and indoline-3-(3-aminopropyl) carbamates on LPS-induced lung injury and pro-inflammatory cytokines in mice. Their mechanism of action was determined in murine peritoneal macrophages. EXPERIMENTAL APPROACH: Lung injury was induced by intratracheal infusion of LPS and assessed by the change in lung weight and structure by light microscopy after staining by haematoxylin and eosin. In LPS-activated macrophages, MAPK proteins and IκBα were measured by Western blotting and the transcription factors, AP-1 and NF-κB by electromobility shift assay. Cytokines in the plasma and spleen of mice injected with LPS were measured by ELISA-based assay. KEY RESULTS: AN917 and AN680 (1-10 pM) decreased TNF-α protein in macrophages by inhibiting phosphorylation of p38 MAPK, IκBα degradation and activation of AP-1 and NF-κB without affecting cell viability. In vivo, these compounds (10 μmol·kg-1) markedly decreased lung injury induced by LPS and the elevation of TNF-α and IL-6 in lung, plasma and spleen. Activation of α-7nACh receptors contributed to the reduction of TNF-α by AN917, which inhibited AChE in the spleen by 35%. CONCLUSION AND IMPLICATIONS: Indoline carbamates are potent inhibitors of pro-inflammatory mediators in murine macrophages and in mice injected with LPS, acting via the p38 MAPK, AP-1 and NF-κB cascades. Indirect α-7nACh receptor activation by AN917, through inhibition of AChE, contributes to its anti-inflammatory effect. Indoline carbamates may have therapeutic potential for lung injury and other diseases associated with chronic inflammation without causing immunosuppression.
AB - BACKGROUND AND PURPOSE: In the search for safer and effective anti-inflammatory agents, we investigated the effect of methyl indoline-3-propionate and indoline-3-(3-aminopropyl) carbamates on LPS-induced lung injury and pro-inflammatory cytokines in mice. Their mechanism of action was determined in murine peritoneal macrophages. EXPERIMENTAL APPROACH: Lung injury was induced by intratracheal infusion of LPS and assessed by the change in lung weight and structure by light microscopy after staining by haematoxylin and eosin. In LPS-activated macrophages, MAPK proteins and IκBα were measured by Western blotting and the transcription factors, AP-1 and NF-κB by electromobility shift assay. Cytokines in the plasma and spleen of mice injected with LPS were measured by ELISA-based assay. KEY RESULTS: AN917 and AN680 (1-10 pM) decreased TNF-α protein in macrophages by inhibiting phosphorylation of p38 MAPK, IκBα degradation and activation of AP-1 and NF-κB without affecting cell viability. In vivo, these compounds (10 μmol·kg-1) markedly decreased lung injury induced by LPS and the elevation of TNF-α and IL-6 in lung, plasma and spleen. Activation of α-7nACh receptors contributed to the reduction of TNF-α by AN917, which inhibited AChE in the spleen by 35%. CONCLUSION AND IMPLICATIONS: Indoline carbamates are potent inhibitors of pro-inflammatory mediators in murine macrophages and in mice injected with LPS, acting via the p38 MAPK, AP-1 and NF-κB cascades. Indirect α-7nACh receptor activation by AN917, through inhibition of AChE, contributes to its anti-inflammatory effect. Indoline carbamates may have therapeutic potential for lung injury and other diseases associated with chronic inflammation without causing immunosuppression.
UR - http://www.scopus.com/inward/record.url?scp=84921668868&partnerID=8YFLogxK
U2 - 10.1111/bph.12982
DO - 10.1111/bph.12982
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 25322956
AN - SCOPUS:84921668868
SN - 0007-1188
VL - 172
SP - 1101
EP - 1113
JO - British Journal of Pharmacology
JF - British Journal of Pharmacology
IS - 4
ER -