Abstract
Cancer stem cell (CSC) identification relies on transplantation assays of cell subpopulations sorted from fresh tumor samples. Here, we attempt to bypass limitations of abundant tumor source and predetermined immune selection by in vivo propagating patient-derived xenografts (PDX) from human malignant rhabdoid tumor (MRT), a rare and lethal pediatric neoplasm, to an advanced state in which most cells behave as CSCs. Stemness is then probed by comparative transcriptomics of serial PDXs generating a gene signature of epithelial to mesenchymal transition, invasion/motility, metastasis, and self-renewal, pinpointing putative MRT CSC markers. The relevance of these putative CSC molecules is analyzed by sorting tumorigenic fractions from early-passaged PDX according to one such molecule, deciphering expression in archived primary tumors, and testing the effects of CSC molecule inhibition on MRT growth. Using this platform, we identify ALDH1 and lysyl oxidase (LOX) as relevant targets and provide a larger framework for target and drug discovery in rare pediatric cancers. Golan et al. demonstrate that long-term propagation of human MRT xenografts robustly enriches for cancer stem cell frequency. This was exploited in turn for the identification of potential therapeutic targets in MRT such as lysyl oxidase and disclosed a platform to identify CSC targets in other rare pediatric tumors for which novel therapeutics are sought.
Original language | English |
---|---|
Pages (from-to) | 795-810 |
Number of pages | 16 |
Journal | Stem Cell Reports |
Volume | 11 |
Issue number | 3 |
DOIs | |
State | Published - 11 Sep 2018 |
Bibliographical note
Publisher Copyright:© 2018 The Authors
Funding
We thank Itamar Goldstein for his assistance with the FACS experiments and Peleg Hasson for provision of BAPN. This work was supported by the Zeiring Foundation , the Israel Cancer Association (grant no. 20150916) and the Israel Cancer Research Fund (ICRF) (grant no. PG-14-112 to B.D.). A patent application on isolation and characterization of cancer stem cells has been filed by Sheba Medical Center (THM). This work is part of the requirements toward a PhD degree, Sackler School of Medicine, Tel Aviv University (R.S. and H.G.). We thank Itamar Goldstein for his assistance with the FACS experiments and Peleg Hasson for provision of BAPN. This work was supported by the Zeiring Foundation, the Israel Cancer Association (grant no. 20150916) and the Israel Cancer Research Fund (ICRF) (grant no. PG-14-112 to B.D.). A patent application on isolation and characterization of cancer stem cells has been filed by Sheba Medical Center (THM). This work is part of the requirements toward a PhD degree, Sackler School of Medicine, Tel Aviv University (R.S. and H.G.).
Funders | Funder number |
---|---|
Zeiring Foundation | |
Israel Cancer Research Fund | PG-14-112 |
Israel Cancer Association | 20150916 |
Keywords
- ALDH1
- LOX inhibition
- MRT
- PDX
- cancer stem cells
- stem cells
- targeted therapy