Abstract
A novel protocol for in situ synthesis of Cu2O nanoparticles immobilized on natural bentonite and zeolite and functionalized by polyethylene glycol is reported. The NPs were synthesized during the course of the catalytic reduction of 4-nitrophenol in the presence of NaBH4. The synthesized precursors and the catalysts Cu2O/PEG-BT and Cu2O/PEG-ZT were characterized by X-ray diffraction, high-resolution scanning electron microscopy, energy-dispersive X-ray and atomic absorption spectroscopy, surface area analysis, and UV-visible spectroscopy. The diffraction and microscopy data confirmed that in situ copper oxide (I) NPs were synthesized with a size range of 20 to 40 nm. The reduction rate constants at 25 °C for Cu2O/PEG-BT and Cu2O/PEG-ZT were 1.22 × 10−2 and 1.79 × 10−2 s−1, respectively. The synthesized catalysts were found to be highly effective and inexpensive. [Figure not available: see fulltext.].
Original language | English |
---|---|
Article number | 97 |
Journal | Journal of Nanoparticle Research |
Volume | 21 |
Issue number | 5 |
DOIs | |
State | Published - 1 May 2019 |
Bibliographical note
Publisher Copyright:© 2019, Springer Nature B.V.
Funding
Funding information This work was supported by the Ministry of Education and Science of Republic of Kazakhstan grant 3444/ GF4 BScientific bases development of phosphorus-containing compounds obtained on the basis of technogenic mineral raw materials^.
Funders | Funder number |
---|---|
Ministry of Education and Science of the Republic of Kazakhstan | 3444/ GF4 BScientific |
Keywords
- 4-Nitrophenol reduction
- Bentonite
- CuO catalyst
- Nano-composites
- Nanostructured catalysts
- PEG
- Zeolite