Abstract
One highly studied aspect of social networks is the identification of influential nodes that can spread ideas in a highly efficient way. The vast majority of works in this field have investigated the problem of identifying a set of nodes, that if "seeded" simultaneously, would maximize the information spread in the network. Yet, the timing aspect, namely, finding not only which nodes should be seeded but also when to seed them, has not been sufficiently addressed. In this work, we revisit the problem of network seeding and demonstrate by simulations how an approach takes takes into account the timing aspect, can improve the rates of spread by over 23% compared to existing seeding methods. Such an approach has a wide range of applications, especially in cases where the network topology is easily accessible.
Original language | English |
---|---|
Title of host publication | Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2015 |
Editors | Jian Pei, Jie Tang, Fabrizio Silvestri |
Publisher | Association for Computing Machinery, Inc |
Pages | 629-632 |
Number of pages | 4 |
ISBN (Electronic) | 9781450338547 |
DOIs | |
State | Published - 25 Aug 2015 |
Externally published | Yes |
Event | IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2015 - Paris, France Duration: 25 Aug 2015 → 28 Aug 2015 |
Publication series
Name | Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2015 |
---|
Conference
Conference | IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2015 |
---|---|
Country/Territory | France |
City | Paris |
Period | 25/08/15 → 28/08/15 |
Bibliographical note
Publisher Copyright:© 2015 ACM.