TY - JOUR
T1 - Improving cytocompatibility of Co28Cr6Mo by TiO2 coating
T2 - Gene expression study in human endothelial cells
AU - Tsaryk, R.
AU - Peters, K.
AU - Unger, R. E.
AU - Feldmann, M.
AU - Hoffmann, B.
AU - Heidenau, F.
AU - Kirkpatrick, C. J.
PY - 2013/9/6
Y1 - 2013/9/6
N2 - Cobalt-basedmaterials arewidely used for coronary stents, aswell as bone and joint implants. However, their use is associated with high corrosion incidence. Titanium alloys, by contrast, are more biocompatible owing to the formation of a relatively inactive titanium oxide (TiO2) layer on their surface. This study was aimed at improving Co28Cr6Mo alloy cytocompatibility via sol-gel TiO2 coating to reduce metal corrosion and metal ion release. Owing to their role in inflammation and tissue remodelling around an implant, endothelial cells present a suitable in vitro model for testing the biological response to metallic materials. Primary human endothelial cells seeded on Co28Cr6Mo showed a stress phenotypewith numerous F-actin fibres absent on TiO2-coatedmaterial. To investigate this effect at the gene expression level, cDNAmicroarray analysis of in total 1301 genes was performed. Compared with control cells, 247 genes were expressed differentially in the cells grown on Co28Cr6Mo, among them genes involved in proliferation, oxidative stress response and inflammation. TiO2 coating reduced the effects of Co28Cr6Mo on gene expression in endothelial cells, with only 34 genes being differentially expressed. Quantitative real-time polymerase chain reaction and protein analysis confirmedmicroarray data for selected genes. The effect of TiO2 coating can be, in part, attributed to the reduced release of Co2+, because addition of CoCl2 resulted in similar cellular responses. TiO2 coating of cobalt-based materials, therefore, could be used in the production of cobalt-based devices for cardiovascular and skeletal applications to reduce the adverse effects of metal corrosion products and to improve the response of endothelial and other cell types.
AB - Cobalt-basedmaterials arewidely used for coronary stents, aswell as bone and joint implants. However, their use is associated with high corrosion incidence. Titanium alloys, by contrast, are more biocompatible owing to the formation of a relatively inactive titanium oxide (TiO2) layer on their surface. This study was aimed at improving Co28Cr6Mo alloy cytocompatibility via sol-gel TiO2 coating to reduce metal corrosion and metal ion release. Owing to their role in inflammation and tissue remodelling around an implant, endothelial cells present a suitable in vitro model for testing the biological response to metallic materials. Primary human endothelial cells seeded on Co28Cr6Mo showed a stress phenotypewith numerous F-actin fibres absent on TiO2-coatedmaterial. To investigate this effect at the gene expression level, cDNAmicroarray analysis of in total 1301 genes was performed. Compared with control cells, 247 genes were expressed differentially in the cells grown on Co28Cr6Mo, among them genes involved in proliferation, oxidative stress response and inflammation. TiO2 coating reduced the effects of Co28Cr6Mo on gene expression in endothelial cells, with only 34 genes being differentially expressed. Quantitative real-time polymerase chain reaction and protein analysis confirmedmicroarray data for selected genes. The effect of TiO2 coating can be, in part, attributed to the reduced release of Co2+, because addition of CoCl2 resulted in similar cellular responses. TiO2 coating of cobalt-based materials, therefore, could be used in the production of cobalt-based devices for cardiovascular and skeletal applications to reduce the adverse effects of metal corrosion products and to improve the response of endothelial and other cell types.
KW - Biocompatibility
KW - Cobalt alloy
KW - Endothelial cell
KW - Gene expression
KW - Titanium oxide
UR - http://www.scopus.com/inward/record.url?scp=84880778155&partnerID=8YFLogxK
U2 - 10.1098/rsif.2013.0428
DO - 10.1098/rsif.2013.0428
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 23825117
AN - SCOPUS:84880778155
SN - 1742-5689
VL - 10
JO - Journal of the Royal Society Interface
JF - Journal of the Royal Society Interface
IS - 86
M1 - 0428
ER -