Improved carbon migration modelling with the ERO code

Olivier Van Hoey, Andreas Kirschner, Carolina Björkas, Dmitry Borodin, Dmitry Matveev, Inge Uytdenhouwen, Guido Van Oost

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

Material migration is a crucial issue in thermonuclear fusion devices. To study carbon migration, 13CH4 has been injected through a polished graphite roof-like test limiter in the TEXTOR scrape-off layer. The interpretation of the experimental 13C deposition patterns on the roof limiter surface has been done with the ERO impurity transport code. To reproduce the very low experimental 13C deposition efficiencies with ERO, an enhanced re-erosion mechanism for re-deposited carbon had to be assumed in previous studies. However, erosion by hydrogenic species produced during dissociation of injected 13CH4 was not taken into account by ERO in these studies. This additional erosion could maybe explain the very low experimental 13C deposition efficiencies. Therefore, it is now taken into account in ERO. Also more realistic physical sputtering yields and hydrocarbon reflection probabilities have been implemented in ERO. The simulations with these improvements included clearly confirm the need for enhanced re-erosion of re-deposited carbon.

Original languageEnglish
Pages (from-to)S891-S894
JournalJournal of Nuclear Materials
Volume438
Issue numberSUPPL
DOIs
StatePublished - 2013
Externally publishedYes

Bibliographical note

Funding Information:
The presented study was made possible by an Aspirant Grant from FWO (Fonds voor Wetenschappelijk Onderzoek) and additional working budgets from Ghent University and SCK•CEN. The work was mainly performed in the Institute of Energy and Climate Research – Plasma Physics at Forschungszentrum Jülich under the TEC (Trilateral Euregio Cluster) agreement.

Funding

The presented study was made possible by an Aspirant Grant from FWO (Fonds voor Wetenschappelijk Onderzoek) and additional working budgets from Ghent University and SCK•CEN. The work was mainly performed in the Institute of Energy and Climate Research – Plasma Physics at Forschungszentrum Jülich under the TEC (Trilateral Euregio Cluster) agreement.

FundersFunder number
Fonds Wetenschappelijk Onderzoek
Universiteit Gent

    Fingerprint

    Dive into the research topics of 'Improved carbon migration modelling with the ERO code'. Together they form a unique fingerprint.

    Cite this