Importin β regulates the seeding of chromatin with initiation sites for nuclear pore assembly

Asaf Rotem, Rita Gruber, Hagai Shorer, Lihi Shaulov, Eugenia Klein, Amnon Harel

Research output: Contribution to journalArticlepeer-review

56 Scopus citations

Abstract

The nuclear envelope of higher eukaryotic cells reforms at the exit from mitosis, in concert with the assembly of nuclear pore complexes (NPCs). The first step in postmitotic NPC assembly involves the "seeding" of chromatin with ELYS and the Nup107-160 complex. Subsequent steps in the assembly process are poorly understood and different mechanistic models have been proposed to explain the formation of the full supramolecular structure. Here, we show that the initial step of chromatin seeding is negatively regulated by importin β. Direct imaging of the chromatin attachment sites reveals single sites situated predominantly on the highest substructures of chromatin surface and lacking any sign of annular structures or oligomerized pre-NPCs. Surprisingly, the inhibition by importin β is only partially reversed by RanGTP. Importin β forms a high-molecular-weight complex with both ELYS and the Nup107-160 complex in cytosol. We suggest that initiation sites for NPC assembly contain single copies of chromatin-bound ELYS/Nup107-160 and that the lateral oligomerization of these subunits depends on the recruitment of membrane components. We predict that additional regulators, besides importin β and Ran, may be involved in coordinating the initial seeding of chromatin with subsequent steps in the NPC assembly pathway.

Original languageEnglish
Pages (from-to)4031-4042
Number of pages12
JournalMolecular Biology of the Cell
Volume20
Issue number18
DOIs
StatePublished - 15 Sep 2009
Externally publishedYes

Fingerprint

Dive into the research topics of 'Importin β regulates the seeding of chromatin with initiation sites for nuclear pore assembly'. Together they form a unique fingerprint.

Cite this