Abstract
In the recent years, there has been a significant improvement in the quality of samples produced by (deep) generative models such as variational auto-encoders and generative adversarial networks. However, the representation capabilities of these methods still do not capture the full distribution for complex classes of images, such as human faces. This deficiency has been clearly observed in previous works that use pre-trained generative models to solve imaging inverse problems. In this paper, we suggest to mitigate the limited representation capabilities of generators by making them image-adaptive and enforcing compliance of the restoration with the observations via back-projections. We empirically demonstrate the advantages of our proposed approach for image super-resolution and compressed sensing.
Original language | English |
---|---|
Title of host publication | AAAI 2020 - 34th AAAI Conference on Artificial Intelligence |
Publisher | AAAI press |
Pages | 3121-3129 |
Number of pages | 9 |
ISBN (Electronic) | 9781577358350 |
State | Published - 2020 |
Externally published | Yes |
Event | 34th AAAI Conference on Artificial Intelligence, AAAI 2020 - New York, United States Duration: 7 Feb 2020 → 12 Feb 2020 |
Publication series
Name | AAAI 2020 - 34th AAAI Conference on Artificial Intelligence |
---|
Conference
Conference | 34th AAAI Conference on Artificial Intelligence, AAAI 2020 |
---|---|
Country/Territory | United States |
City | New York |
Period | 7/02/20 → 12/02/20 |
Bibliographical note
Publisher Copyright:© 2020, Association for the Advancement of Artificial Intelligence.
Funding
Acknowledgments SAH is supported by the NSF-BSF grant (No. 2017729). TT is supported by the European research council (ERC StG 757497 PI Giryes).
Funders | Funder number |
---|---|
NSF-BSF | 2017729 |
Horizon 2020 Framework Programme | 757497 |
European Commission |