Identifying structure across prepartitioned data

Zvika Marx, Ido Dagan, Eli Shamir

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

3 Scopus citations

Abstract

We propose an information-theoretic clustering approach that incorporates a pre-known partition of the data, aiming to identify common clusters that cut across the given partition. In the standard clustering setting the formation of clusters is guided by a single source of feature information. The newly utilized pre-partition factor introduces an additional bias that counterbalances the impact of the features whenever they become correlated with this known partition. The resulting algorithmic framework was applied successfully to synthetic data, as well as to identifying text-based cross-religion correspondences.

Original languageEnglish
Title of host publicationAdvances in Neural Information Processing Systems 16 - Proceedings of the 2003 Conference, NIPS 2003
PublisherNeural information processing systems foundation
ISBN (Print)0262201526, 9780262201520
StatePublished - 2004
Event17th Annual Conference on Neural Information Processing Systems, NIPS 2003 - Vancouver, BC, Canada
Duration: 8 Dec 200313 Dec 2003

Publication series

NameAdvances in Neural Information Processing Systems
ISSN (Print)1049-5258

Conference

Conference17th Annual Conference on Neural Information Processing Systems, NIPS 2003
Country/TerritoryCanada
CityVancouver, BC
Period8/12/0313/12/03

Fingerprint

Dive into the research topics of 'Identifying structure across prepartitioned data'. Together they form a unique fingerprint.

Cite this