TY - JOUR
T1 - Hypericin derivatives
T2 - Substituent effects on radical-anion formation
AU - Rahimipour, Shai
AU - Palivan, Cornelia
AU - Freeman, Dalia
AU - Barbosa, Frédérique
AU - Fridkin, Mati
AU - Weiner, Lev
AU - Mazur, Yehuda
AU - Gescheidt, Georg
PY - 2001/8/1
Y1 - 2001/8/1
N2 - The electron-transfer properties of the hypericin derivatives, dibromo-, hexaacetyl-, hexamethyl- and desmethylhypericin, were studied. Cyclovoltammetric measurements revealed that dibromo- and desmethylhypericin have almost the same redox potentials as the parent hypericin. Substitution of the hydroxyl groups by acetoxy leads to less negative E1/2 values, whereas methoxy substitution induces more negative values. Electron paramagnetic resonance (EPR)/electron nuclear double resonance/general TRIPLE spectroscopy and quantum mechanical calculations were used to establish the structure of the one-electron reduced stages of hypericin derivatives. Proton loss in the bay region, already demonstrated for hypericin, was also found for dibromo- and desmethylhypericin. The spin and charge of the radical ions are predominately confined to the central biphenoquinone moiety of the hypericin skeleton. Generation of the radical ions by in situ electrolysis indicates that the redox potentials of hypericin, dibromo- and desmethylhypericin, containing hydroxyls at the 1, 3, 4, 6, 8 and 13 positions, largely depend on the solvent. With phosphate-buffered saline (pH 7.4)/dimethylsulfoxide (DMSO) as the solvent the EPR spectra of the corresponding radical ions appear at markedly lower potentials than in pure DMSO and N,N′-dimethylformamide. However, this effect is not observable for hexaacetyl- and hexamethylhypericin-lacking hydroxyl groups. In all cases the EPR data and calculations revealed the presence of 7,14 tautomers.
AB - The electron-transfer properties of the hypericin derivatives, dibromo-, hexaacetyl-, hexamethyl- and desmethylhypericin, were studied. Cyclovoltammetric measurements revealed that dibromo- and desmethylhypericin have almost the same redox potentials as the parent hypericin. Substitution of the hydroxyl groups by acetoxy leads to less negative E1/2 values, whereas methoxy substitution induces more negative values. Electron paramagnetic resonance (EPR)/electron nuclear double resonance/general TRIPLE spectroscopy and quantum mechanical calculations were used to establish the structure of the one-electron reduced stages of hypericin derivatives. Proton loss in the bay region, already demonstrated for hypericin, was also found for dibromo- and desmethylhypericin. The spin and charge of the radical ions are predominately confined to the central biphenoquinone moiety of the hypericin skeleton. Generation of the radical ions by in situ electrolysis indicates that the redox potentials of hypericin, dibromo- and desmethylhypericin, containing hydroxyls at the 1, 3, 4, 6, 8 and 13 positions, largely depend on the solvent. With phosphate-buffered saline (pH 7.4)/dimethylsulfoxide (DMSO) as the solvent the EPR spectra of the corresponding radical ions appear at markedly lower potentials than in pure DMSO and N,N′-dimethylformamide. However, this effect is not observable for hexaacetyl- and hexamethylhypericin-lacking hydroxyl groups. In all cases the EPR data and calculations revealed the presence of 7,14 tautomers.
UR - http://www.scopus.com/inward/record.url?scp=0035437623&partnerID=8YFLogxK
U2 - 10.1562/0031-8655(2001)074<0149:HDSEOR>2.0.CO;2
DO - 10.1562/0031-8655(2001)074<0149:HDSEOR>2.0.CO;2
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 11547548
AN - SCOPUS:0035437623
SN - 0031-8655
VL - 74
SP - 149
EP - 156
JO - Photochemistry and Photobiology
JF - Photochemistry and Photobiology
IS - 2
ER -