Hypercontractivity on high dimensional expanders

Mitali Bafna, Max Hopkins, Tali Kaufman, Shachar Lovett

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

6 Scopus citations

Abstract

Hypercontractivity is one of the most powerful tools in Boolean function analysis. Originally studied over the discrete hypercube, recent years have seen increasing interest in extensions to settings like the p-biased cube, slice, or Grassmannian, where variants of hypercontractivity have found a number of breakthrough applications including the resolution of Khot's 2-2 Games Conjecture (Khot, Minzer, Safra FOCS 2018). In this work, we develop a new theory of hypercontractivity on high dimensional expanders (HDX), an important class of expanding complexes that has recently seen similarly impressive applications in both coding theory and approximate sampling. Our results lead to a new understanding of the structure of Boolean functions on HDX, including a tight analog of the KKL Theorem and a new characterization of non-expanding sets. Unlike previous settings satisfying hypercontractivity, HDX can be asymmetric, sparse, and very far from products, which makes the application of traditional proof techniques challenging. We handle these barriers with the introduction of two new tools of independent interest: a new explicit combinatorial Fourier basis for HDX that behaves well under restriction, and a new local-to-global method for analyzing higher moments. Interestingly, unlike analogous second moment methods that apply equally across all types of expanding complexes, our tools rely inherently on simplicial structure. This suggests a new distinction among high dimensional expanders based upon their behavior beyond the second moment. This is an extended abstract. The full paper may be found at https://arxiv.org/abs/2111.09444.

Original languageEnglish
Title of host publicationSTOC 2022 - Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing
EditorsStefano Leonardi, Anupam Gupta
PublisherAssociation for Computing Machinery
Pages185-194
Number of pages10
ISBN (Electronic)9781450392648
DOIs
StatePublished - 6 Sep 2022
Event54th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2022 - Rome, Italy
Duration: 20 Jun 202224 Jun 2022

Publication series

NameProceedings of the Annual ACM Symposium on Theory of Computing
ISSN (Print)0737-8017

Conference

Conference54th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2022
Country/TerritoryItaly
CityRome
Period20/06/2224/06/22

Bibliographical note

Publisher Copyright:
© 2022 Owner/Author.

Keywords

  • High Dimensional Expanders
  • Hypercontractivity
  • Small-Set Expansion

Fingerprint

Dive into the research topics of 'Hypercontractivity on high dimensional expanders'. Together they form a unique fingerprint.

Cite this