Abstract
Mo6S8 Chevrel phase (CP) is still the most effective magnesium ions insertion material that was examined in cathodes for rechargeable Mg battery model systems. Its synthesis includes CuMo6S8 as an intermediate which undergoes Cu ions leaching. Thereby, CP materials may contain small amounts of copper. CuxMo6S8 undergoes complex magnesium insertion processes that include reversible displacement of copper. We report herein on a study of Cu0.09Mo6S8 electrodes in two electrolyte solutions which are important for secondary Mg batteries: C6H6MgCl/AlCl3/THF (all phenyl complex solutions, APC) and MgTFSI2/MgCl2/DME (Mg imide/chloride/DME solutions, ICD). There systems are ideal playgrounds for studying the nature of complex magnesium insertion processes into inorganic hosts. The analysis reported herein shows how the electroanalytical behavior of CP electrodes is affected by the electrolyte solution identity. For instance, the main Mg ions insertion process from the APC solutions occurs at 160 mV lower than from the ICD ones; the heterogeneous rate constant for charge transfer across the interface are significantly higher in APC solutions; in turn, the conversion processes related to the Cu residue in the CP electrodes are kinetically and thermodynamically favorable in the ICD solutions. As expected, the magnesium solid-state diffusion coefficient was found to be solutions independent. The study demonstrates the sensitivity of electroanalytical tools such as slow scanning rate voltammetry for reflecting fine structural changes during intercalation processes and can be generalized to other systems.
Original language | English |
---|---|
Article number | 135614 |
Journal | Electrochimica Acta |
Volume | 334 |
DOIs | |
State | Published - 20 Feb 2020 |
Bibliographical note
Publisher Copyright:© 2020 Elsevier Ltd
Funding
A partial support for this work was obtained from the European Commission in the framework of the E-MAGIC consortium, grant ID 205232, and from Israel High Education Committee, in the framework of the INREP consortium and related projects, grant ID 204434. A partial support for this work was obtained from the European Commission in the framework of the E-MAGIC consortium, grant ID 205232, and from Israel High Education Committee, in the framework of the INREP consortium and related projects, grant ID 204434.
Funders | Funder number |
---|---|
Israel High Education Committee | 204434 |
Horizon 2020 Framework Programme | 824066 |
European Commission | ID 205232 |
Planning and Budgeting Committee of the Council for Higher Education of Israel | ID 204434 |
Keywords
- And solid-state diffusion coefficient
- Chevrel phase
- Heterogeneous rate constant for charge transfer across the interface (Ks)