Abstract
The analysis of Fourier-transformed scanning tunnelling microscopy images with subatomic resolution is a common tool for studying the properties of quasiparticle excitations in strongly correlated materials. Although Fourier amplitudes are generally complex valued, earlier analysis primarily focused on their absolute values. Their complex phases were often deemed random, and thus irrelevant, due to the unknown positions of the impurities in the sample. Here we show how to factor out these random phases by analysing overlaps between Fourier amplitudes that differ by reciprocal lattice vectors. The resulting holographic maps provide important and previously unknown information about the electronic structures. When applied to superconducting cuprates, our method solves a long-standing puzzle of the dichotomy between equivalent wavevectors. We show that d-wave Wannier functions of the conduction band provide a natural explanation for experimental results that were interpreted as evidence for competing unconventional charge modulations. Our work opens a new pathway to identify the nature of electronic states in scanning tunnelling microscopy.
Original language | English |
---|---|
Pages (from-to) | 1052-1056 |
Number of pages | 5 |
Journal | Nature Physics |
Volume | 12 |
Issue number | 11 |
DOIs | |
State | Published - 1 Nov 2016 |
Bibliographical note
Publisher Copyright:© 2016 Macmillan Publishers Limited. All rights reserved.