TY - JOUR
T1 - High-spatial-resolution mapping of catalytic reactions on single particles
AU - Wu, Chung Yeh
AU - Wolf, William J.
AU - Levartovsky, Yehonatan
AU - Bechtel, Hans A.
AU - Martin, Michael C.
AU - Toste, F. Dean
AU - Gross, Elad
N1 - Publisher Copyright:
© 2017 Macmillan Publishers Limited. All rights reserved.
PY - 2017/1/26
Y1 - 2017/1/26
N2 - The critical role in surface reactions and heterogeneous catalysis of metal atoms with low coordination numbers, such as found at atomic steps and surface defects, is firmly established. But despite the growing availability of tools that enable detailed in situ characterization, so far it has not been possible to document this role directly. Surface properties can be mapped with high spatial resolution, and catalytic conversion can be tracked with a clear chemical signature; however, the combination of the two, which would enable high-spatial-resolution detection of reactions on catalytic surfaces, has rarely been achieved. Single-molecule fluorescence spectroscopy has been used to image and characterize single turnover sites at catalytic surfaces, but is restricted to reactions that generate highly fluorescing product molecules. Herein the chemical conversion of N-heterocyclic carbene molecules attached to catalytic particles is mapped using synchrotron-radiation-based infrared nanospectroscopy with a spatial resolution of 25 nanometres, which enabled particle regions that differ in reactivity to be distinguished. These observations demonstrate that, compared to the flat regions on top of the particles, the peripheries of the particles-which contain metal atoms with low coordination numbers-are more active in catalysing oxidation and reduction of chemically active groups in surface-anchored N-heterocyclic carbene molecules.
AB - The critical role in surface reactions and heterogeneous catalysis of metal atoms with low coordination numbers, such as found at atomic steps and surface defects, is firmly established. But despite the growing availability of tools that enable detailed in situ characterization, so far it has not been possible to document this role directly. Surface properties can be mapped with high spatial resolution, and catalytic conversion can be tracked with a clear chemical signature; however, the combination of the two, which would enable high-spatial-resolution detection of reactions on catalytic surfaces, has rarely been achieved. Single-molecule fluorescence spectroscopy has been used to image and characterize single turnover sites at catalytic surfaces, but is restricted to reactions that generate highly fluorescing product molecules. Herein the chemical conversion of N-heterocyclic carbene molecules attached to catalytic particles is mapped using synchrotron-radiation-based infrared nanospectroscopy with a spatial resolution of 25 nanometres, which enabled particle regions that differ in reactivity to be distinguished. These observations demonstrate that, compared to the flat regions on top of the particles, the peripheries of the particles-which contain metal atoms with low coordination numbers-are more active in catalysing oxidation and reduction of chemically active groups in surface-anchored N-heterocyclic carbene molecules.
UR - http://www.scopus.com/inward/record.url?scp=85016139039&partnerID=8YFLogxK
U2 - 10.1038/nature20795
DO - 10.1038/nature20795
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 28068671
AN - SCOPUS:85016139039
SN - 0028-0836
VL - 541
SP - 511
EP - 515
JO - Nature
JF - Nature
IS - 7638
ER -