High operating temperature XBn-InAsSb bariode detectors

Philip Klipstein, Olga Klin, Steven Grossman, Noam Snapi, Inna Lukomsky, Michael Yassen, Daniel Aronov, Eyal Berkowitz, Alex Glozman, Osnat Magen, Itay Shtrichman, Rami Frenkel, Eliezer Weiss

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

40 Scopus citations


A bariode is a new type of "diode-like" semiconductor photonic device, in which the transport of majority carriers is blocked by a barrier in the depletion layer, while minority carriers, created thermally or by the absorption of light, are allowed to pass freely across the device. In an n-type bariode, also known as an XB nn structure, both the active photon absorbing layer and the barrier layer are doped with electron donors, while in a p-type bariode, or XB pp structure, they are both doped with electron acceptors. An important advantage of bariode devices is that their dark current is essentially diffusion limited, so that high detector operating temperatures can be achieved. In this paper we report on MWIR n-type bariode detectors with an InAsSb active layer and an AlSbAs barrier layer, grown on either GaSb or GaAs substrates. For both substrate types, the bariodes exhibit a bandgap wavelength of ∼ 4.1 μm and operate with Background Limited Performance (BLIP) up to at least 160K at F/3. Different members of the XBnn device family are investigated, in which the contact layer material, "X", is changed between n-InAsSb and p-GaSb. In all cases, the electro-optical properties of the devices are similar, showing clearly the generic nature of the bariode device architecture. Focal Plane Array detectors have been made with a pitch of 15 or 30μm. We present radiometric performance data and images from our Blue Fairy (320×256) and Pelican (640×512) detectors, operating at temperatures up to 180K. We demonstrate for both GaSb and GaAs substrates that detector performance can be achieved which is close to "Rule 07", the benchmark for high quality, diffusion limited, Mercury Cadmium Telluride (MCT) devices.

Original languageEnglish
Title of host publicationQuantum Sensing and Nanophotonic Devices IX
StatePublished - 2012
Externally publishedYes
EventQuantum Sensing and Nanophotonic Devices IX - San Francisco, CA, United States
Duration: 22 Jan 201226 Jan 2012

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
ISSN (Print)0277-786X


ConferenceQuantum Sensing and Nanophotonic Devices IX
Country/TerritoryUnited States
CitySan Francisco, CA


  • Bariode
  • Focal Plane Array
  • High Operating Temperature
  • InAsSb
  • Infrared Detector
  • Type II superlattice
  • XBn
  • XBp
  • nBn
  • pBp


Dive into the research topics of 'High operating temperature XBn-InAsSb bariode detectors'. Together they form a unique fingerprint.

Cite this