High areal capacity battery electrodes enabled by segregated nanotube networks

Sang Hoon Park, Paul J. King, Ruiyuan Tian, Conor S. Boland, João Coelho, Chuanfang Zhang, Patrick McBean, Niall McEvoy, Matthias P. Kremer, Dermot Daly, Jonathan N. Coleman, Valeria Nicolosi

Research output: Contribution to journalArticlepeer-review

336 Scopus citations

Abstract

Increasing the energy storage capability of lithium-ion batteries necessitates maximization of their areal capacity. This requires thick electrodes performing at near-theoretical specific capacity. However, achievable electrode thicknesses are restricted by mechanical instabilities, with high-thickness performance limited by the attainable electrode conductivity. Here we show that forming a segregated network composite of carbon nanotubes with a range of lithium storage materials (for example, silicon, graphite and metal oxide particles) suppresses mechanical instabilities by toughening the composite, allowing the fabrication of high-performance electrodes with thicknesses of up to 800 μm. Such composite electrodes display conductivities up to 1 × 104 S m−1 and low charge-transfer resistances, allowing fast charge-delivery and enabling near-theoretical specific capacities, even for thick electrodes. The combination of high thickness and specific capacity leads to areal capacities of up to 45 and 30 mAh cm−2 for anodes and cathodes, respectively. Combining optimized composite anodes and cathodes yields full cells with state-of-the-art areal capacities (29 mAh cm−2) and specific/volumetric energies (480 Wh kg−1 and 1,600 Wh l−1).

Original languageEnglish
Pages (from-to)560-567
Number of pages8
JournalNature Energy
Volume4
Issue number7
DOIs
StatePublished - 1 Jul 2019
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2019, The Author(s), under exclusive licence to Springer Nature Limited.

Fingerprint

Dive into the research topics of 'High areal capacity battery electrodes enabled by segregated nanotube networks'. Together they form a unique fingerprint.

Cite this