Hemorrhage control by short electrical pulses—In vivo experiments

G Malki, O Barnea, Y. Mandel

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

An internal hemorrhagic shock is one of the leading causes of death in the battlefield and other trauma events. However the application of direct pressure, as in the treatment of an external hemorrhage, is not possible. Most common techniques to achieve vasoconstriction are through heat; yet heating causes irreversible destruction of organ tissues. Therefore, there is a need for a non-thermal based technology for hemorrhage control. The current research describes, for the first, an attempt to reduce the amount of bleeding in animal model liver injuries by using electrical pulses treatment (EPT). In the experiments, which were performed on 28 rats and 14 rabbits, a short (25μs and 50μs) EPT was applied to the treatment groups and the amount of bleeding was compared to the non-treatment (NT) groups. A reduction of 60%, 36% and 44% in blood volume, was found in the 25μs-rats, 50μs-rats and 25μs-rabbits EPT groups, respectively (P<;0.001). Also, it was found that the hemorrhage control was not caused by the mechanical pressure applied by the electrodes, and there was no evidence for thermal coagulation. Further research is needed to fully expose the potential of this treatment and the modality for hemorrhage control in civilian and military settings.
Original languageAmerican English
Title of host publication2012 IEEE 27th Convention
StatePublished - 2012

Bibliographical note

Electrical & Electronics Engineers in Israel (IEEEI);
Place of conference:Eilat, Israel

Fingerprint

Dive into the research topics of 'Hemorrhage control by short electrical pulses—In vivo experiments'. Together they form a unique fingerprint.

Cite this