Abstract
The design of glitch-resistant higher-order masking schemes is an important challenge in cryptographic engineering. A recent work by Moos et al. (CHES 2019) showed that most published schemes (and all efficient ones) exhibit local or composability flaws at high security orders, leaving a critical gap in the literature on hardware masking. In this article, we first extend the simulatability framework of Belaïd et al. (EUROCRYPT 2016) and prove that a compositional strategy that is correct without glitches remains valid with glitches. We then use this extended framework to prove the first masked gadgets that enable trivial composition with glitches at arbitrary orders. We show that the resulting 'Hardware Private Circuits' approach the implementation efficiency of previous (flawed) schemes. We finally investigate how trivial composition can serve as a basis for a tool that allows verifying full masked hardware implementations (e.g., of complete block ciphers) at any security order from their HDL code. As side products, we improve the randomness complexity of the best published refreshing gadgets, show that some S-box representations allow latency reductions and confirm practical claims based on implementation results.
Original language | English |
---|---|
Article number | 9190067 |
Pages (from-to) | 1677-1690 |
Number of pages | 14 |
Journal | IEEE Transactions on Computers |
Volume | 70 |
Issue number | 10 |
DOIs | |
State | Published - 1 Oct 2021 |
Externally published | Yes |
Bibliographical note
Funding Information:Ga€etan Cassiers and Franc¸ois-Xavier Standaert are respective Research Fellow and Senior Associate Researcher of the Belgian Fund for Scientific Research (FNRS-F.R.S.). This work has been funded in part by the ERC Project 724725.
Publisher Copyright:
© 1968-2012 IEEE.
Keywords
- Cryptography
- composability
- glitch-Based leakages
- masking countermeasure
- physical defaults
- side-channel attacks