Hamiltonian Map to Conformal Modification of Spacetime Metric: Kaluza-Klein and TeVeS

Lawrence Horwitz, Avi Gershon, Marcelo Schiffer

Research output: Contribution to journalArticlepeer-review

14 Scopus citations


It has been shown that the orbits of motion for a wide class of non-relativistic Hamiltonian systems can be described as geodesic flows on a manifold and an associated dual by means of a conformal map. This method can be applied to a four dimensional manifold of orbits in spacetime associated with a relativistic system. We show that a relativistic Hamiltonian which generates Einstein geodesics, with the addition of a world scalar field, can be put into correspondence in this way with another Hamiltonian with conformally modified metric. Such a construction could account for part of the requirements of Bekenstein for achieving the MOND theory of Milgrom in the post-Newtonian limit. The constraints on the MOND theory imposed by the galactic rotation curves, through this correspondence, would then imply constraints on the structure of the world scalar field. We then use the fact that a Hamiltonian with vector gauge fields results, through such a conformal map, in a Kaluza-Klein type theory, and indicate how the TeVeS structure of Bekenstein and Saunders can be put into this framework. We exhibit a class of infinitesimal gauge transformations on the gauge fields Uμ(x) which preserve the Bekenstein-Sanders condition UμUμ = -1. The underlying quantum structure giving rise to these gauge fields is a Hilbert bundle, and the gauge transformations induce a non-commutative behavior to the fields, i. e. they become of Yang-Mills type. Working in the infinitesimal gauge neighborhood of the initial Abelian theory we show that in the Abelian limit the Yang-Mills field equations provide residual nonlinear terms which may avoid the caustic singularity found by Contaldi et al.

Original languageEnglish
Pages (from-to)141-157
Number of pages17
JournalFoundations of Physics
Issue number1
StatePublished - Jan 2011


  • Conformal modification of Einstein metric
  • Dark matter and dark energy
  • General relativity
  • Kaluza-Klein theory
  • MOND
  • Properties of galaxies
  • Relativistic astrophysics
  • Relativistic noncompact Yang-Mills theory with Lorentz group valued gauge transformations on a Hilbert bundle
  • TeVeS


Dive into the research topics of 'Hamiltonian Map to Conformal Modification of Spacetime Metric: Kaluza-Klein and TeVeS'. Together they form a unique fingerprint.

Cite this