Guanidinium Substitution Improves Self-Healing and Photodamage Resilience of MAPbI3

Pallavi Singh, Davide Raffaele Ceratti, Yahel Soffer, Sudipta Bera, Yishay Feldman, Michael Elbaum, Dan Oron, David Cahen, Gary Hodes

Research output: Contribution to journalArticlepeer-review

Abstract

Self-healing materials can become game changers for developing sustainable (opto)electronics. APbX3 halide (=X-) perovskites, HaPs, have shown a remarkable ability to self-heal damage. While we demonstrated self-healing in pure HaP compounds, in single crystals, and in polycrystalline thin films (as used in most devices), HaP compositions with multiple A+ (and X-) constituents are preferred for solar cells. We now show self-healing in mixed A+ HaPs. Specifically, if at least 15 atom % of the methylammonium (MA+) A cation is substituted for by guanidinium (Gua+) or acetamidinium (AA+), then the self-healing rate after damage is enhanced. In contrast, replacing MA+ with dimethylammonium (DMA+), comparable in size to Gua+ or AA+, does not alter this rate. Based on the times for self-healing, we infer that the rate-determining step involves short-range diffusion of A+ and/or Pb2+ cations and that the self-healing rate correlates with the strain in the material, the A+ cation dipole moment, and H-bonding between A+ and I-. These insights may offer clues for developing a detailed self-healing mechanism and understanding the kinetics to guide the design of self-healing materials. Fast recovery kinetics are important from the device perspective, as they allow complete recovery in devices during operation or when switched off (LEDs)/in the dark (photovoltaics).

Original languageEnglish
Pages (from-to)19999-20008
Number of pages10
JournalJournal of Physical Chemistry C
Volume128
Issue number47
DOIs
StatePublished - 28 Nov 2024
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2024 The Authors. Published by American Chemical Society.

Fingerprint

Dive into the research topics of 'Guanidinium Substitution Improves Self-Healing and Photodamage Resilience of MAPbI3'. Together they form a unique fingerprint.

Cite this