Growth of InAs/GaSb strained layer superlattices by MOVPE III. Use of UV absorption to monitor alkyl stability in the reactor

G. R. Booker, M. Daly, P. C. Klipstein, M. Lakrimi, T. F. Kuech, Jiang Li, S. G. Lyapin, N. J. Mason, I. J. Murgatroyd, J. C. Portal, R. J. Nicholas, D. M. Symons, P. Vicente, P. J. Walker

Research output: Contribution to journalArticlepeer-review

18 Scopus citations

Abstract

InAs/GaSb strained layer superlattices have been grown by atmospheric pressure MOVPE and the growth conditions optimised by observing, in real time, the in-situ UV absorption of the alkyls in the growth chamber. The Raman scattering of folded longitudinal acoustic phonons in the superlattices has been used as a probe of the periodicity of the superlattice. Atomic force microscopy has also been used to give information about the final surface morphology and RMS roughness of the superlattices. By combining all three techniques, optimum conditions have been found for the growth of short period InAs/GaSb superlattices. These have been used to sandwich a long period superlattice designed for transport measurements. The use of the short period superlattices eliminated additional conducting layers at each end of the semimetallic superlattice and produced structures where the hole and electron densities are equal. Such structures exhibit a dramatic new quantum transport effect where the Hall resistance goes to zero at high pressures and low temperatures.

Original languageEnglish
Pages (from-to)777-782
Number of pages6
JournalJournal of Crystal Growth
Volume170
Issue number1-4
DOIs
StatePublished - Jan 1997
Externally publishedYes

Fingerprint

Dive into the research topics of 'Growth of InAs/GaSb strained layer superlattices by MOVPE III. Use of UV absorption to monitor alkyl stability in the reactor'. Together they form a unique fingerprint.

Cite this