Graph spanners by sketching in dynamic streams and the simultaneous communication model

Arnold Filtser, Michael Kapralov, Navid Nouri

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

17 Scopus citations

Abstract

Graph sketching is a powerful technique introduced by the seminal work of Ahn, Guha and McGregor'12 on connectivity in dynamic graph streams that has enjoyed considerable attention in the literature since then, and has led to near optimal dynamic streaming algorithms for many fundamental problems such as connectivity, cut and spectral sparsifiers and matchings. Interestingly, however, the sketching and dynamic streaming complexity of approximating the shortest path metric of a graph is still far from well-understood. Besides a direct k-pass implementation of classical spanner constructions (recently improved to bk2 c + 1-passes by Fernandez, Woodruff and Yasuda'20) the state of the art amounts to a O(log k)-pass algorithm of Ahn, Guha and McGregor'12, and a 2-pass algorithm of Kapralov and Woodruff'14. In particular, no single pass algorithm is known, and the optimal tradeoff between the number of passes, stretch and space complexity is open. In this paper we introduce several new graph sketching techniques for approximating the shortest path metric of the input graph. We give the first single pass sketching algorithm for constructing graph spanners: we show how to obtain a Oe(n23 )-spanner using Oe(n) space, and in general a Oe(n23 (1−α))-spanner using Oe(n1+α) space for every α ∈ [0, 1], a tradeoff that we think may be close optimal. We also give new spanner construction algorithms for any number of passes, simultaneously improving upon all prior work on this problem. Finally, we note that unlike the original sketching approach of Ahn, Guha and McGregor'12, none of the existing spanner constructions yield simultaneous communication protocols with low per player information. We give the first such protocols for the spanner problem that use a small number of rounds.

Original languageEnglish
Title of host publicationACM-SIAM Symposium on Discrete Algorithms, SODA 2021
EditorsDaniel Marx
PublisherAssociation for Computing Machinery
Pages1894-1913
Number of pages20
ISBN (Electronic)9781611976465
StatePublished - 2021
Externally publishedYes
Event32nd Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2021 - Alexandria, Virtual, United States
Duration: 10 Jan 202113 Jan 2021

Publication series

NameProceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms

Conference

Conference32nd Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2021
Country/TerritoryUnited States
CityAlexandria, Virtual
Period10/01/2113/01/21

Bibliographical note

Publisher Copyright:
Copyright © 2021 by SIAM

Fingerprint

Dive into the research topics of 'Graph spanners by sketching in dynamic streams and the simultaneous communication model'. Together they form a unique fingerprint.

Cite this