Graph Positional Encoding via Random Feature Propagation

Moshe Eliasof, Fabrizio Frasca, Beatrice Bevilacqua, Eran Treister, Gal Chechik, Haggai Maron

Research output: Contribution to journalConference articlepeer-review

Abstract

Two main families of node feature augmentation schemes have been explored for enhancing GNNs: random features and spectral positional encoding. Surprisingly, however, there is still no clear understanding of the relation between these two augmentation schemes. Here we propose a novel family of positional encoding schemes which draws a link between the above two approaches and improves over both. The new approach, named Random Feature Propagation (RFP), is inspired by the power iteration method and its generalizations. It concatenates several intermediate steps of an iterative algorithm for computing the dominant eigenvectors of a propagation matrix, starting from random node features. Notably, these propagation steps are based on graph-dependent propagation operators that can be either predefined or learned. We explore the theoretical and empirical benefits of RFP. First, we provide theoretical justifications for using random features, for incorporating early propagation steps, and for using multiple random initializations. Then, we empirically demonstrate that RFP significantly outperforms both spectral PE and random features in multiple node classification and graph classification benchmarks.

Original languageEnglish
Pages (from-to)9202-9223
Number of pages22
JournalProceedings of Machine Learning Research
Volume202
StatePublished - 2023
Event40th International Conference on Machine Learning, ICML 2023 - Honolulu, United States
Duration: 23 Jul 202329 Jul 2023

Bibliographical note

Publisher Copyright:
© 2023 Proceedings of Machine Learning Research. All rights reserved.

Funding

The research reported in this paper was supported by the Israeli Council for Higher Education (CHE) via the Data Science Research Center, Ben-Gurion University of the Negev, Israel. ME is supported by Kreitman High-tech scholarship.

FundersFunder number
Data Science Research Center
Ben-Gurion University of the Negev
Council for Higher Education

    Fingerprint

    Dive into the research topics of 'Graph Positional Encoding via Random Feature Propagation'. Together they form a unique fingerprint.

    Cite this