Grand quasi Lebesgue spaces

Maria Rosaria Formica, Eugeny Ostrovsky, Leonid Sirota

Research output: Contribution to journalArticlepeer-review

6 Scopus citations

Abstract

We introduce a new class of quasi-Banach spaces as an extension of the classical Grand Lebesgue Spaces for “small” values of the parameter, and we investigate some its properties, in particular, completeness, fundamental function, operators estimates, Boyd indices, contraction principle, tail behavior, dual space, generalized triangle and quadrilateral constants and inequalities.

Original languageEnglish
Article number125369
JournalJournal of Mathematical Analysis and Applications
Volume504
Issue number1
DOIs
StatePublished - 1 Dec 2021

Bibliographical note

Publisher Copyright:
© 2021 Elsevier Inc.

Funding

The first author has been partially supported by the Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM) and by Università degli Studi di Napoli Parthenope through the project “sostegno alla Ricerca individuale”. The first author has been partially supported by the Gruppo Nazionale per l'Analisi Matematica, la Probabilit? e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM) and by Universit? degli Studi di Napoli Parthenope through the project ?sostegno alla Ricerca individuale?.

FundersFunder number
GNAMPA
Gruppo Nazionale per l'Analisi Matematica, la Probabilit?
Studi di Napoli Parthenope
Universit?
Istituto Nazionale di Alta Matematica "Francesco Severi"
Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni
Università degli Studi di Napoli Parthenope

    Keywords

    • Contraction principle
    • Grand quasi Lebesgue Spaces
    • Hardy operators
    • Lebesgue-Riesz spaces
    • Quasi-Banach spaces
    • Tail function

    Fingerprint

    Dive into the research topics of 'Grand quasi Lebesgue spaces'. Together they form a unique fingerprint.

    Cite this