Grand Lebesgue Spaces are really Banach algebras relative to the convolution on unimodular locally compact groups equipped with Haar measure

Maria Rosaria Formica, Eugeny Ostrovsky, Leonid Sirota

Research output: Contribution to journalArticlepeer-review

4 Scopus citations

Abstract

We prove that the Grand Lebesgue Space built on a unimodular locally compact topological group, equipped with bi-invariant Haar measure, forms a Banach algebra relative to the convolution.

Original languageEnglish
Pages (from-to)1702-1714
Number of pages13
JournalMathematische Nachrichten
Volume294
Issue number9
DOIs
StatePublished - Sep 2021

Bibliographical note

Publisher Copyright:
© 2021 Wiley-VCH GmbH

Funding

The first named author has been partially supported by the Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM) and by Università degli Studi di Napoli Parthenope through the project “sostegno alla Ricerca individuale”.

FundersFunder number
Istituto Nazionale di Alta Matematica "Francesco Severi"
Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni
Università degli Studi di Napoli Parthenope

    Keywords

    • Grand Lebesgue Spaces
    • Haar measure
    • Lebesgue–Riesz space
    • Young inequality
    • beta-function
    • convolution
    • locally compact topological groups
    • modulus of continuity
    • unimodular group

    Fingerprint

    Dive into the research topics of 'Grand Lebesgue Spaces are really Banach algebras relative to the convolution on unimodular locally compact groups equipped with Haar measure'. Together they form a unique fingerprint.

    Cite this