Abstract
Cell-based therapies use living cells with therapeutic traits to treat various diseases. This is a beneficial alternative for diseases that existing medicine cannot cure efficiently. However, inconsistent results in clinical trials are preventing the advancement and implementation of cell-based therapy. In order to explain such results, there is a need to discover the fate of the transplanted cells. To answer this need, we developed a technique for noninvasive in vivo cell tracking, which uses gold nanoparticles as contrast agents for CT imaging. Herein, we investigate the design principles of this technique for intramuscular transplantation of therapeutic cells. Longitudinal studies were performed, demonstrating the ability to track cells over long periods of time. As few as 500 cells could be detected and a way to quantify the number of cells visualized by CT was demonstrated. This cell-tracking technology has the potential to become an essential tool in pre-clinical studies as well as in clinical trials and advance cell therapy.
Original language | English |
---|---|
Title of host publication | Nanoscale Imaging, Sensing, and Actuation for Biomedical Applications XV |
Editors | Dan V. Nicolau, Alexander N. Cartwright, Dror Fixler |
Publisher | SPIE |
ISBN (Electronic) | 9781510614970 |
DOIs | |
State | Published - 2018 |
Event | Nanoscale Imaging, Sensing, and Actuation for Biomedical Applications XV 2018 - San Francisco, United States Duration: 30 Jan 2018 → 31 Jan 2018 |
Publication series
Name | Progress in Biomedical Optics and Imaging - Proceedings of SPIE |
---|---|
Volume | 10506 |
ISSN (Print) | 1605-7422 |
Conference
Conference | Nanoscale Imaging, Sensing, and Actuation for Biomedical Applications XV 2018 |
---|---|
Country/Territory | United States |
City | San Francisco |
Period | 30/01/18 → 31/01/18 |
Bibliographical note
Publisher Copyright:© 2018 SPIE.
Keywords
- cell tracking
- computed tomography
- gold nanoparticles
- imaging