Abstract
In NLP, text language models based on words or subwords are known to outperform their character-based counterparts. Yet, in the speech community, the standard input of spoken LMs are 20ms or 40ms-long discrete units (shorter than a phoneme). Taking inspiration from word-based LM, we introduce a Generative Spoken Language Model (GSLM) based on word-size continuous-valued audio embeddings that can generate diverse and expressive language output. This is obtained by replacing lookup table for lexical types with a Lexical Embedding function, the cross entropy loss by a contrastive loss, and multinomial sampling by k-NN sampling. The resulting model is the first generative language model based on word-size continuous embeddings. Its performance is on par with discrete unit GSLMs regarding generation quality as measured by automatic metrics and subjective human judgements. Moreover, it is five times more memory efficient thanks to its large 200ms units. In addition, the embeddings before and after the Lexical Embedder are phonetically and semantically interpretable..
Original language | English |
---|---|
Title of host publication | EMNLP 2023 - 2023 Conference on Empirical Methods in Natural Language Processing, Proceedings |
Editors | Houda Bouamor, Juan Pino, Kalika Bali |
Publisher | Association for Computational Linguistics (ACL) |
Pages | 3008-3023 |
Number of pages | 16 |
ISBN (Electronic) | 9798891760608 |
State | Published - 2023 |
Externally published | Yes |
Event | 2023 Conference on Empirical Methods in Natural Language Processing, EMNLP 2023 - Hybrid, Singapore, Singapore Duration: 6 Dec 2023 → 10 Dec 2023 |
Publication series
Name | EMNLP 2023 - 2023 Conference on Empirical Methods in Natural Language Processing, Proceedings |
---|
Conference
Conference | 2023 Conference on Empirical Methods in Natural Language Processing, EMNLP 2023 |
---|---|
Country/Territory | Singapore |
City | Hybrid, Singapore |
Period | 6/12/23 → 10/12/23 |
Bibliographical note
Publisher Copyright:©2023 Association for Computational Linguistics.
Funding
This work was funded in part, to the authors in their academic capacities, by the Agence Na-tionale pour la Recherche (ANR-17-EURE-0017 Frontcog, ANR-10-IDEX-0001-02 PSL*, ANR-19-P3IA-0001 PRAIRIE 3IA Institute), CIFAR (Learning in Machines and Brains) and Meta AI Research (Research Grant). This work was performed using HPC resources from GENCI-IDRIS (Grant 2021-[AD011011217]).
Funders | Funder number |
---|---|
ANR-10-IDEX-0001-02 | PSL, ANR-19-P3IA-0001 |
ANR-17-EURE-0017 | |
Agence Na-tionale pour la Recherche | |
GENCI-IDRIS | |
Meta AI Research | |
Canadian Institute for Advanced Research |