TY - JOUR
T1 - Generating Acute and Chronic Experimental Models of Motor Tic Expression in Rats
AU - Vinner, Esther
AU - Belelovsky, Katya
AU - Bar-Gad, Izhar
N1 - Publisher Copyright:
© 2021 JoVE Journal of Visualized Experiments.
PY - 2021/5/27
Y1 - 2021/5/27
N2 - Motor tics are sudden, rapid, recurrent movements that are the key symptoms of Tourette syndrome and other tic disorders. The pathophysiology of tic generation is associated with abnormal inhibition of the basal ganglia, particularly its primary input structure, the striatum. In animal models of both rodents and non-human primates, local application of GABAA antagonists, such as bicuculline and picrotoxin, into the motor parts of the striatum induces local disinhibition resulting in the expression of motor tics. Here, we present acute and chronic models of motor tics in rats. In the acute model, bicuculline microinjections through a cannula implanted in the dorsal striatum elicit the expression of tics lasting for short time periods of up to an hour. The chronic model is an alternative enabling the extension of tic expression to periods of several days or even weeks, utilizing continuous infusion of bicuculline via a sub-cutaneous mini-osmotic pump. The models enable the study of the behavioral and neural mechanisms of tic generation throughout the cortico-basal ganglia pathway. The models support the implantation of additional recording and stimulation devices in addition to the injection cannulas, thus allowing for a wide variety of usages such as electrical and optical stimulation and electrophysiological recordings. Each method has different advantages and shortcomings: the acute model enables the comparison of the kinematic properties of movement and the corresponding electrophysiological changes before, during and after tic expression and the effects of short-term modulators on tic expression. This acute model is simple to establish; however, it is limited to a short period of time. The chronic model, while more complex, makes feasible the study of tic dynamics and behavioral effects on tic expression over prolonged periods. Thus, the type of empirical query drives the choice between these two complementary models of tic expression.
AB - Motor tics are sudden, rapid, recurrent movements that are the key symptoms of Tourette syndrome and other tic disorders. The pathophysiology of tic generation is associated with abnormal inhibition of the basal ganglia, particularly its primary input structure, the striatum. In animal models of both rodents and non-human primates, local application of GABAA antagonists, such as bicuculline and picrotoxin, into the motor parts of the striatum induces local disinhibition resulting in the expression of motor tics. Here, we present acute and chronic models of motor tics in rats. In the acute model, bicuculline microinjections through a cannula implanted in the dorsal striatum elicit the expression of tics lasting for short time periods of up to an hour. The chronic model is an alternative enabling the extension of tic expression to periods of several days or even weeks, utilizing continuous infusion of bicuculline via a sub-cutaneous mini-osmotic pump. The models enable the study of the behavioral and neural mechanisms of tic generation throughout the cortico-basal ganglia pathway. The models support the implantation of additional recording and stimulation devices in addition to the injection cannulas, thus allowing for a wide variety of usages such as electrical and optical stimulation and electrophysiological recordings. Each method has different advantages and shortcomings: the acute model enables the comparison of the kinematic properties of movement and the corresponding electrophysiological changes before, during and after tic expression and the effects of short-term modulators on tic expression. This acute model is simple to establish; however, it is limited to a short period of time. The chronic model, while more complex, makes feasible the study of tic dynamics and behavioral effects on tic expression over prolonged periods. Thus, the type of empirical query drives the choice between these two complementary models of tic expression.
UR - http://www.scopus.com/inward/record.url?scp=85108239709&partnerID=8YFLogxK
U2 - 10.3791/61743
DO - 10.3791/61743
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 34125084
AN - SCOPUS:85108239709
SN - 1940-087X
VL - 2021
JO - Journal of Visualized Experiments
JF - Journal of Visualized Experiments
IS - 171
M1 - e61743
ER -