Generalization of Tail Inequalities for Random Variables in the Martingale Theory

Maria Rosaria Formica, Eugeny Ostrovsky, Leonid Sirota

Research output: Contribution to journalArticlepeer-review

Abstract

We generalize the tail Doob’s inequality, concerning two non-negative random variables, arising in the martingale theory, in three directions: on the more general source data, on the random variables belonging to the so-called Grand Lebesgue Spaces, as well as on the multidimensional variables. We also provide several examples. Moreover we show the exactness of the estimates obtained in the particular case of positive random variables having exponential distribution.

Original languageEnglish
Pages (from-to)457-467
Number of pages11
JournalContemporary Mathematics (Singapore)
Volume3
Issue number4
DOIs
StatePublished - 2022

Bibliographical note

Publisher Copyright:
© 2022 Maria Rosaria Formica, et al.

Funding

M.R. Formica is partially supported by University of Naples “Parthenope”, Dept. of Economic and Legal Studies, project CoRNDiS, DM MUR 737/2021, CUP I55F21003620001. M.R. Formica is member of Gruppo Nazionale per l’Analisi Matematica, la Probabilit`a e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM) and member of the UMI group “Teoria dell’Approssimazione e Applicazioni (T.A.A.)”.

FundersFunder number
Teoria dell’Approssimazione e Applicazioni
Università degli Studi di Napoli Federico IIDM MUR 737/2021, CUP I55F21003620001
Istituto Nazionale di Alta Matematica "Francesco Severi"
Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni

    Keywords

    • Doob’s inequalities
    • Grand Lebesgue spaces
    • Young-Fenchel transform
    • expectation
    • martingale
    • probability space
    • random variable
    • tail of distribution

    Fingerprint

    Dive into the research topics of 'Generalization of Tail Inequalities for Random Variables in the Martingale Theory'. Together they form a unique fingerprint.

    Cite this