TY - UNPB
T1 - Gamma-ray burst interaction with the circumburst medium: The CBM phase of GRBs
AU - Pe'er, Asaf
AU - Ryde, Felix
PY - 2024
Y1 - 2024
N2 - Progenitor stars of long gamma-ray bursts (GRBs) could be surrounded by a significant and complex nebula structure lying at a parsec scale distance. After the initial release of energy from the GRB jet, the jet will interact with this nebula environment. We show here that for a large, plausible parameter space region, the interaction between the jet blastwave and the wind termination (reverse) shock is expected to be weak, and may be associated with a precursor emission. As the jet blast wave encounters the contact discontinuity separating the shocked wind and the shocked interstellar medium, we find that a bright flash of synchrotron emission from the newly-formed reverse shock is produced. This flash is expected to be observed at around ~100 s after the initial explosion and precursor. Such a delayed emission thus constitutes a circumburst medium (CBM) phase in a GRB, having a physically distinct origin from the preceding prompt phase and the succeeding afterglow phase. The CBM phase emission may thus provide a natural explanation to bursts observed to have a precursor followed by an intense, synchrotron-dominated main episode that is found in a substantial minority, ~10% of GRBs. A correct identification of the emission phase is thus required to infer the properties of the flow and of the immediate environment around GRB progenitors.
AB - Progenitor stars of long gamma-ray bursts (GRBs) could be surrounded by a significant and complex nebula structure lying at a parsec scale distance. After the initial release of energy from the GRB jet, the jet will interact with this nebula environment. We show here that for a large, plausible parameter space region, the interaction between the jet blastwave and the wind termination (reverse) shock is expected to be weak, and may be associated with a precursor emission. As the jet blast wave encounters the contact discontinuity separating the shocked wind and the shocked interstellar medium, we find that a bright flash of synchrotron emission from the newly-formed reverse shock is produced. This flash is expected to be observed at around ~100 s after the initial explosion and precursor. Such a delayed emission thus constitutes a circumburst medium (CBM) phase in a GRB, having a physically distinct origin from the preceding prompt phase and the succeeding afterglow phase. The CBM phase emission may thus provide a natural explanation to bursts observed to have a precursor followed by an intense, synchrotron-dominated main episode that is found in a substantial minority, ~10% of GRBs. A correct identification of the emission phase is thus required to infer the properties of the flow and of the immediate environment around GRB progenitors.
U2 - 10.48550/arXiv.2406.03841
DO - 10.48550/arXiv.2406.03841
M3 - פרסום מוקדם
BT - Gamma-ray burst interaction with the circumburst medium: The CBM phase of GRBs
PB - arXiv preprint
ER -