Fundamental Solution for Cauchy Initial Value Problem for Parabolic PDEs with Discontinuous Unbounded First-Order Coefficient at the Origin. Extension of the Classical Parametrix Method

Maria Rosaria Formica, Eugeny Ostrovsky, Leonid Sirota

Research output: Contribution to journalArticlepeer-review

Abstract

We prove the existence of a fundamental solution of the Cauchy initial boundary value problem on the whole space for a parabolic partial differential equation with discontinuous unbounded first-order coefficient at the origin. We establish also non-asymptotic, rapidly decreasing at infinity, upper and lower estimates for the fundamental solution. We extend the classical parametrix method of E.E. Levi.

Original languageEnglish
Pages (from-to)399-413
Number of pages15
JournalActa Applicandae Mathematicae
Volume170
Issue number1
DOIs
StatePublished - 1 Dec 2020

Bibliographical note

Publisher Copyright:
© 2020, Springer Nature B.V.

Funding

The first author has been partially supported by the Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM) and by Università degli Studi di Napoli Parthenope through the project “sostegno alla Ricerca individuale”. The first author has been partially supported by the Gruppo Nazionale per l?Analisi Matematica, la Probabilit? e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM) and by Universit? degli Studi di Napoli Parthenope through the project ?sostegno alla Ricerca individuale?.

FundersFunder number
GNAMPA
Universit?
Istituto Nazionale di Alta Matematica "Francesco Severi"
Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni
Università degli Studi di Napoli Parthenope
Seconda Università degli Studi di Napoli

    Keywords

    • Chapman-Kolmogorov equation
    • Fundamental solution
    • Generalized Mittag-Leffler function
    • Neumann series
    • Partial Differential Equation of parabolic type
    • Volterra’s integral equation

    Fingerprint

    Dive into the research topics of 'Fundamental Solution for Cauchy Initial Value Problem for Parabolic PDEs with Discontinuous Unbounded First-Order Coefficient at the Origin. Extension of the Classical Parametrix Method'. Together they form a unique fingerprint.

    Cite this