Abstract
Let Ω be a convex polytope in ℝd. We say that Ω is spectral if the space L2(Ω) admits an orthogonal basis consisting of exponential functions. There is a conjecture, which goes back to Fuglede (1974), that Ω is spectral if and only if it can tile the space by translations. It is known that if Ω tiles then it is spectral, but the converse was proved only in dimension d = 2, by Iosevich, Katz and Tao. By a result due to Kolountzakis, if a convex polytope Ω ⊂ ℝd is spectral, then it must be centrally symmetric. We prove that also all the facets of Ω are centrally symmetric. These conditions are necessary for Ω to tile by translations. We also develop an approach which allows us to prove that in dimension d = 3, any spectral convex polytope Ω indeed tiles by translations. Thus we obtain that Fuglede's conjecture is true for convex polytopes in ℝ3.
Original language | English |
---|---|
Pages (from-to) | 1497-1538 |
Number of pages | 42 |
Journal | Analysis and PDE |
Volume | 10 |
Issue number | 6 |
DOIs | |
State | Published - 2017 |
Bibliographical note
Publisher Copyright:© 2017 Mathematical Sciences Publishers.
Funding
Funders | Funder number |
---|---|
Horizon 2020 Framework Programme | 713927 |
Keywords
- Convex polytope
- Fuglede's conjecture
- Spectral set
- Tiling