Front propagation and effect of memory in stochastic desertification models with an absorbing state

Dor Herman, Nadav M. Shnerb

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

Desertification in dryland ecosystems is considered to be a major environmental threat that may lead to devastating consequences. The concern increases when the system admits two alternative steady states and the transition is abrupt and irreversible (catastrophic shift). However, recent studies show that the inherent stochasticity of the birth-death process, when superimposed on the presence of an absorbing state, may lead to a continuous (second order) transition even if the deterministic dynamics supports a catastrophic transition. Following these works we present here a numerical study of a one-dimensional stochastic desertification model, where the deterministic predictions are confronted with the observed dynamics. Our results suggest that a stochastic spatial system allows for a propagating front only when its active phase invades the inactive (desert) one. In the extinction phase one observes transient front propagation followed by a global collapse. In the presence of a seed bank the vegetation state is shown to be more robust against demographic stochasticity, but the transition in that case still belongs to the directed percolation equivalence class.

Original languageEnglish
Article number083404
JournalJournal of Statistical Mechanics: Theory and Experiment
Volume2017
Issue number8
DOIs
StatePublished - 24 Aug 2017

Bibliographical note

Publisher Copyright:
© 2017 IOP Publishing Ltd and SISSA Medialab srl.

Keywords

  • absorbing states
  • nonlinear dynamics
  • population dynamics
  • stochastic processes

Fingerprint

Dive into the research topics of 'Front propagation and effect of memory in stochastic desertification models with an absorbing state'. Together they form a unique fingerprint.

Cite this