From diffusion in compartmentalized media to non-Gaussian random walks

Jakub Ślęzak, Stanislav Burov

Research output: Contribution to journalArticlepeer-review

13 Scopus citations

Abstract

In this work we establish a link between two different phenomena that were studied in a large and growing number of biological, composite and soft media: the diffusion in compartmentalized environment and the non-Gaussian diffusion that exhibits linear or power-law growth of the mean square displacement joined by the exponential shape of the positional probability density. We explore a microscopic model that gives rise to transient confinement, similar to the one observed for hop-diffusion on top of a cellular membrane. The compartmentalization of the media is achieved by introducing randomly placed, identical barriers. Using this model of a heterogeneous medium we derive a general class of random walks with simple jump rules that are dictated by the geometry of the compartments. Exponential decay of positional probability density is observed and we also quantify the significant decrease of the long time diffusion constant. Our results suggest that the observed exponential decay is a general feature of the transient regime in compartmentalized media.

Original languageEnglish
Article number5101
JournalScientific Reports
Volume11
Issue number1
DOIs
StatePublished - 3 Mar 2021

Bibliographical note

Publisher Copyright:
© 2021, The Author(s).

Funding

This work was supported by the Pazy foundation Grant 61139927.

FundersFunder number
PAZY Foundation61139927

    Fingerprint

    Dive into the research topics of 'From diffusion in compartmentalized media to non-Gaussian random walks'. Together they form a unique fingerprint.

    Cite this