Frailty-Based Competing Risks Model for Multivariate Survival Data

Malka Gorfine, Li Hsu

Research output: Contribution to journalArticlepeer-review

52 Scopus citations

Abstract

In this work, we provide a new class of frailty-based competing risks models for clustered failure times data. This class is based on expanding the competing risks model of Prentice et al. (1978,Biometrics34, 541-554) to incorporate frailty variates, with the use of cause-specific proportional hazards frailty models for all the causes. Parametric and nonparametric maximum likelihood estimators are proposed. The main advantages of the proposed class of models, in contrast to the existing models, are: (1) the inclusion of covariates; (2) the flexible structure of the dependency among the various types of failure times within a cluster; and (3) the unspecified within-subject dependency structure. The proposed estimation procedures produce the most efficient parametric and semiparametric estimators and are easy to implement. Simulation studies show that the proposed methods perform very well in practical situations.

Original languageEnglish
Pages (from-to)415-426
Number of pages12
JournalBiometrics
Volume67
Issue number2
DOIs
StatePublished - Jun 2011
Externally publishedYes

Funding

FundersFunder number
National Institute on AgingR01AG014358
National Cancer InstituteP01CA053996

    Keywords

    • Competing risks
    • Frailty model
    • Multivariate survival analysis
    • Nonparametric maximum likelihood estimator

    Fingerprint

    Dive into the research topics of 'Frailty-Based Competing Risks Model for Multivariate Survival Data'. Together they form a unique fingerprint.

    Cite this