Fractal landscapes and molecular evolution: modeling the myosin heavy chain gene family

S. V. Buldyrev, A. L. Goldberger, S. Havlin, C. K. Peng, H. E. Stanley, M. H. Stanley, M. Simons

Research output: Contribution to journalArticlepeer-review

11 Scopus citations

Abstract

Mapping nucleotide sequences onto a "DNA walk" produces a novel representation of DNA that can then be studied quantitatively using techniques derived from fractal landscape analysis. We used this method to analyze 11 complete genomic and cDNA myosin heavy chain (MHC) sequences belonging to 8 different species. Our analysis suggests an increase in fractal complexity for MHC genes with evolution with vertebrate > invertebrate > yeast. The increase in complexity is measured by the presence of long-range power-law correlations, which are quantified by the scaling exponent alpha. We develop a simple iterative model, based on known properties of polymeric sequences, that generates long-range nucleotide correlations from an initially noncorrelated coding region. This new model-as well as the DNA walk analysis-both support the intron-late theory of gene evolution.

Original languageEnglish
Pages (from-to)2673-2679
Number of pages7
JournalBiophysical Journal
Volume65
Issue number6
DOIs
StatePublished - 1993
Externally publishedYes

Bibliographical note

Funding Information:
We wish to thank F. Sciortino for important contributions in the initial stages of this project, and C. Cantor, C. DeLisi, J. M. Hausdorff, R. D. Rosenberg, J. J. Schwartz, M. Schwartz, and N. Shworak for valuable discussions. Partial support was provided to A. L. G. by the G. Harold and Leila Y. Mathers Charitable Foundation, the National Heart, Lung and Blood In- stitute, and the National Aeronautics and Space Administration, to M. S. by the American Heart Association to C.-K. P. by the National Institute of Mental Health, and to S. V. B., M. H. R. S., and H. E. S. by the National Science Foundation.

Fingerprint

Dive into the research topics of 'Fractal landscapes and molecular evolution: modeling the myosin heavy chain gene family'. Together they form a unique fingerprint.

Cite this