Finite element analyses for predicting anatomical neck fractures in the proximal humerus

Gal Dahan, Nir Trabelsi, Ori Safran, Zohar Yosibash

Research output: Contribution to journalArticlepeer-review

13 Scopus citations

Abstract

Background: Proximal humerus fractures which occur as a result of a fall on an outstretched arm are frequent among the elderly population. The necessity of stabilizing such fractures by surgical procedures is a controversial matter among surgeons. Validating a personalized FE analysis by ex-vivo experiments of humeri and mimicking such fractures by experiments is the first step along the path to determine the necessity of such surgeries. Methods: Four fresh frozen human humeri were loaded using a new simple experimental setting, so to fracture the humeri at the anatomical neck. Strains on humeri's surfaces predicted by the high order FE analyses (as in Dahan et al., 2016) were compared to the experimental observations to further enhance the validity of the FE analyses. A simplified yield criterion based on a linear elastic analysis and principal strains was used to predict the anatomical neck fracture as observed in the experiment. Findings: An excellent correlation between experimental measured and FE predicted strains was obtained (slope of 0.99 and R2=0.98). All humeri were fractured at the anatomical neck. The predicted yield load was within 10%–20% accuracy. Interpretation: High-order FE analyses reliably predict strains and yield loads in the humeri. Fractures induced by the experimental setting correspond to anatomical neck fractures noticed in practice and classified as AO C1.1–C1.3. Surgical neck fractures, which are most common in clinical practice, could not be realized in the proposed experiments, and a different experimental setting should be sought to obtain them ex-vivo.

Original languageEnglish
Pages (from-to)114-121
Number of pages8
JournalClinical Biomechanics
Volume68
DOIs
StatePublished - Aug 2019
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2019 Elsevier Ltd

Funding

The authors thank Dr. Lena Novack from the Ben-Gurion University and Prof. Malka Gurfine from Tel-Aviv University for their assistance with the statistical study, and Mr. Ilan Gilad and Mr. Yekutiel Katz, from Tel Aviv University for their assistance with the experiments. This study was made possible through the generous support of Milgrom Foundation for Science grant.

FundersFunder number
Milgrom Foundation for Science

    Keywords

    • Anatomic neck fracture
    • FEMs
    • Humerus

    Fingerprint

    Dive into the research topics of 'Finite element analyses for predicting anatomical neck fractures in the proximal humerus'. Together they form a unique fingerprint.

    Cite this