Abstract
Discotic molecules are known to form highly anisotropic structures at the air-water (A-W) interface. We have studied two novel ionic discotic mesogenic molecules, viz., pyridinium tethered with hexaalkoxytriph-enylene with bromide counterion (Py-Tp) and imidazolium tethered with hexaalkoxytriphenylene with bromide counterion (Im-Tp) at A-W and air-solid interfaces. The monolayer phases were investigated at the A-W interface employing surface manometry and Brewster angle microscopy techniques. They indicate a uniform monolayer phase which shows negligible hysteresis on expanding and compressing. Also, in both the systems the collapsed state completely reverts to the monolayer state. These monolayer films transferred at different surface pressures by Langmuir-Blodgett technique were studied by employing atomic force microscopy. The topographies of these films transferred at the low and high surface pressure region of the isotherm indicate a transformation of the monolayer from face-on to edge-on structure.
Original language | English |
---|---|
Pages (from-to) | 11157-11161 |
Number of pages | 5 |
Journal | Journal of Physical Chemistry B |
Volume | 111 |
Issue number | 38 |
DOIs | |
State | Published - 27 Sep 2007 |
Externally published | Yes |