Feasibility of remote speech analysis in evaluation of dynamic fluid overload in heart failure patients undergoing haemodialysis treatment

Offer Amir, Stefan D. Anker, Ittamar Gork, William T. Abraham, Sean P. Pinney, Daniel Burkhoff, Ilan D. Shallom, Ronit Haviv, Elazer R. Edelman, Chaim Lotan

Research output: Contribution to journalArticlepeer-review

7 Scopus citations

Abstract

Aims: This study aimed to assess the ability of a voice analysis application to discriminate between wet and dry states in chronic heart failure (CHF) patients undergoing regular scheduled haemodialysis treatment due to volume overload as a result of their chronic renal failure. Methods and results: In this single-centre, observational study, five patients with CHF, peripheral oedema of ≥2, and pulmonary congestion-related dyspnoea, undergoing haemodialysis three times per week, recorded five sentences into a standard smartphone/tablet before and after haemodialysis. Recordings were provided that same noon/early evening and the next morning and evening. Patient weight was measured at the hospital before and after each haemodialysis session. Recordings were analysed by a smartphone application (app) algorithm, to compare speech measures (SMs) of utterances collected over time. On average, patients provided recordings throughout 25.8 ± 3.9 dialysis treatment cycles, resulting in a total of 472 recordings. Weight changes of 1.95 ± 0.64 kg were documented during cycles. Median baseline SM prior to dialysis was 0.87 ± 0.17, and rose to 1.07 ± 0.15 following the end of the dialysis session, at noon (P = 0.0355), and remained at a similar level until the following morning (P = 0.007). By the evening of the day following dialysis, SMs returned to baseline levels (0.88 ± 0.19). Changes in patient weight immediately after dialysis positively correlated with SM changes, with the strongest correlation measured the evening of the dialysis day [slope: −0.40 ± 0.15 (95% confidence interval: −0.71 to −0.10), P = 0.0096]. Conclusions: The fluid-controlled haemodialysis model demonstrated the ability of the app algorithm to identify cyclic changes in SMs, which reflected bodily fluid levels. The voice analysis platform bears considerable potential as a harbinger of impending fluid overload in a range of clinical scenarios, which will enhance monitoring and triage efforts, ultimately optimizing remote CHF management.

Original languageEnglish
Pages (from-to)2467-2472
Number of pages6
JournalESC heart failure
Volume8
Issue number4
DOIs
StatePublished - Aug 2021

Bibliographical note

Publisher Copyright:
© 2021 The Authors. ESC Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.

Funding

This work was supported by Cordio Medical Ltd. O.A. is a paid consultant to Cordio Medical Ltd. S.D.A. reports receiving grant support from Abbott and Vifor Pharma and fees from Abbott, Bayer, Boehringer Ingelheim, Cardiac Dimension, Impulse Dynamics, Novartis, Servier, and Vifor Pharma and is a consultant to Cordio Medical Ltd. I.G. has no interest to declare. W.T.A. is a consultant to Cordio Medical Ltd. and has received consulting fees from Abbott, Boehringer Ingelheim, CVRx, Edwards Lifesciences, and Respicardia; salary support from V‐Wave Medical; and research support from the US National Institutes of Health/National Heart, Lung, and Blood Institute. S.P.P. is a consultant to Cordio Medical Ltd. and has received consulting fees from Abbott, CareDx, Medtronic, NuPulse, and Procyrion. D.B. is a consultant to Cordio Medical Ltd. I.D.S. is the Chief Technology Officer of Cordio Medical Ltd. R.H. is the Clinical SrVP at Cordio Medical Ltd. E.R.E. is supported in part by a grant from the US National Institutes of Health (NIH R01 49039) and is a paid consultant to Cordio Medical Ltd. C.L. is a board member of Cordio Medical Ltd. and receiving lecture fees from Boehringer Ingelheim.

FundersFunder number
CVRx
Cordio Medical Ltd
Cordio Medical Ltd
Respicardia
National Institutes of HealthR01 49039
National Heart, Lung, and Blood Institute
Abbott Laboratories
Bayer
Edwards Lifesciences
Boehringer Ingelheim
Vifor Pharma

    Keywords

    • Acute heart failure (AHF)
    • Dialysis
    • Remote voice analysis
    • Speech measure (SM)

    Fingerprint

    Dive into the research topics of 'Feasibility of remote speech analysis in evaluation of dynamic fluid overload in heart failure patients undergoing haemodialysis treatment'. Together they form a unique fingerprint.

    Cite this