Fast large-scale honest-majority MPC for malicious adversaries

Koji Chida, Daniel Genkin, Koki Hamada, Dai Ikarashi, Ryo Kikuchi, Yehuda Lindell, Ariel Nof

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

87 Scopus citations

Abstract

Protocols for secure multiparty computation enable a set of parties to compute a function of their inputs without revealing anything but the output. The security properties of the protocol must be preserved in the presence of adversarial behavior. The two classic adversary models considered are semi-honest (where the adversary follows the protocol specification but tries to learn more than allowed by examining the protocol transcript) and malicious (where the adversary may follow any arbitrary attack strategy). Protocols for semi-honest adversaries are often far more efficient, but in many cases the security guarantees are not strong enough. In this paper, we present new protocols for securely computing any functionality represented by an arithmetic circuit. We utilize a new method for verifying that the adversary does not cheat, that yields a cost of just twice that of semi-honest protocols in some settings. Our protocols are information-theoretically secure in the presence of a malicious adversaries, assuming an honest majority. We present protocol variants for small and large fields, and show how to efficiently instantiate them based on replicated secret sharing and Shamir sharing. As with previous works in this area aiming to achieve high efficiency, our protocol is secure with abort and does not achieve fairness, meaning that the adversary may receive output while the honest parties do not. We implemented our protocol and ran experiments for different numbers of parties, different network configurations and different circuit depths. Our protocol significantly outperforms the previous best for this setting (Lindell and Nof, CCS 2017); for a large number of parties, our implementation runs almost an order of magnitude faster than theirs.

Original languageEnglish
Title of host publicationAdvances in Cryptology – CRYPTO 2018 - 38th Annual International Cryptology Conference, 2018, Proceedings
EditorsHovav Shacham, Alexandra Boldyreva
PublisherSpringer Verlag
Pages34-64
Number of pages31
ISBN (Print)9783319968773
DOIs
StatePublished - 2018
Event38th Annual International Cryptology Conference, CRYPTO 2018 - Santa Barbara, United States
Duration: 19 Aug 201823 Aug 2018

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume10993 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference38th Annual International Cryptology Conference, CRYPTO 2018
Country/TerritoryUnited States
CitySanta Barbara
Period19/08/1823/08/18

Bibliographical note

Publisher Copyright:
© International Association for Cryptologic Research 2018.

Funding

Supported by the European Research Council under the ERC consolidators grant agreement no. 615172 (HIPS) and by the BIU Center for Research in Applied Cryptography and Cyber Security in conjunction with the Israel National Cyber Bureau in the Prime Minister’s Office.

FundersFunder number
European Commission615172

    Fingerprint

    Dive into the research topics of 'Fast large-scale honest-majority MPC for malicious adversaries'. Together they form a unique fingerprint.

    Cite this