Abstract
Detecting edges is a fundamental problem in computer vision with many applications, some involving very noisy images. While most edge detection methods are fast, they perform well only on relatively clean images. Unfortunately, sophisticated methods that are robust to high levels of noise are quite slow. In this paper we develop a novel multiscale method to detect curved edges in noisy images. Even though our algorithm searches for edges over an exponentially large set of candidate curves, its runtime is nearly linear in the total number of image pixels. As we demonstrate experimentally, our algorithm is orders of magnitude faster than previous methods designed to deal with high noise levels. At the same time it obtains comparable and often superior results to existing methods on a variety of challenging noisy images.
Original language | English |
---|---|
Title of host publication | Proceedings - 29th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016 |
Publisher | IEEE Computer Society |
Pages | 213-221 |
Number of pages | 9 |
ISBN (Electronic) | 9781467388504 |
DOIs | |
State | Published - 9 Dec 2016 |
Externally published | Yes |
Event | 29th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016 - Las Vegas, United States Duration: 26 Jun 2016 → 1 Jul 2016 |
Publication series
Name | Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition |
---|---|
Volume | 2016-December |
ISSN (Print) | 1063-6919 |
Conference
Conference | 29th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016 |
---|---|
Country/Territory | United States |
City | Las Vegas |
Period | 26/06/16 → 1/07/16 |
Bibliographical note
Publisher Copyright:© 2016 IEEE.