Facts2Story: Controlling Text Generation by Key Facts

Eyal Orbach, Yoav Goldberg

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

10 Scopus citations

Abstract

Recent advancements in self-attention neural network architectures have raised the bar for open-ended text generation. Yet, while current methods are capable of producing a coherent text which is several hundred words long, attaining control over the content that is being generated—as well as evaluating it—are still open questions. We propose a controlled generation task which is based on expanding a sequence of facts, expressed in natural language, into a longer narrative. We introduce human-based evaluation metrics for this task, as well as a method for deriving a large training dataset. We evaluate three methods on this task, based on fine-tuning pre-trained models. We show that while auto-regressive, unidirectional Language Models such as GPT2 produce better fluency, they struggle to adhere to the requested facts. We propose a plan-and-cloze model (using fine-tuned XLNet) which produces competitive fluency while adhering to the requested content.

Original languageEnglish
Title of host publicationCOLING 2020 - 28th International Conference on Computational Linguistics, Proceedings of the Conference
EditorsDonia Scott, Nuria Bel, Chengqing Zong
PublisherAssociation for Computational Linguistics (ACL)
Pages2329-2345
Number of pages17
ISBN (Electronic)9781952148279
DOIs
StatePublished - 2020
Event28th International Conference on Computational Linguistics, COLING 2020 - Virtual, Online, Spain
Duration: 8 Dec 202013 Dec 2020

Publication series

NameCOLING 2020 - 28th International Conference on Computational Linguistics, Proceedings of the Conference

Conference

Conference28th International Conference on Computational Linguistics, COLING 2020
Country/TerritorySpain
CityVirtual, Online
Period8/12/2013/12/20

Bibliographical note

Publisher Copyright:
© 2020 COLING 2020 - 28th International Conference on Computational Linguistics, Proceedings of the Conference. All rights reserved.

Fingerprint

Dive into the research topics of 'Facts2Story: Controlling Text Generation by Key Facts'. Together they form a unique fingerprint.

Cite this