Abstract
In set-based face recognition, we aim to compute the most discriminative descriptor from an unbounded set of images and videos showing a single person. A discriminative descriptor balances two policies when aggregating information from a given set. The first is a quality-based policy: emphasizing high-quality and down-weighting low-quality images. The second is a diversity-based policy: emphasizing unique images in the set and down-weighting multiple occurrences of similar images as found in video clips which can overwhelm the set representation. This work frames faceset representation as a differentiable coreset selection problem. Our model learns how to select a small coreset of the input set that balances quality and diversity policies using a learned metric parameterized by the face quality, optimized end-to-end. The selection process is a differentiable farthest-point sampling (FPS) realized by approximating the non-differentiable Argmax operation with differentiable sampling from the Gumbel-Softmax distribution of distances. The small coreset is later used as queries in a self and crossattention architecture to enrich the descriptor with information from the whole set. Our model is order-invariant and linear in the input set size. We set a new SOTA to set face verification on the IJB-B and IJB-C datasets.
Original language | English |
---|---|
Title of host publication | Technical Tracks 14 |
Editors | Michael Wooldridge, Jennifer Dy, Sriraam Natarajan |
Publisher | Association for the Advancement of Artificial Intelligence |
Pages | 4748-4756 |
Number of pages | 9 |
Edition | 5 |
ISBN (Electronic) | 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879 |
DOIs | |
State | Published - 25 Mar 2024 |
Event | 38th AAAI Conference on Artificial Intelligence, AAAI 2024 - Vancouver, Canada Duration: 20 Feb 2024 → 27 Feb 2024 |
Publication series
Name | Proceedings of the AAAI Conference on Artificial Intelligence |
---|---|
Number | 5 |
Volume | 38 |
ISSN (Print) | 2159-5399 |
ISSN (Electronic) | 2374-3468 |
Conference
Conference | 38th AAAI Conference on Artificial Intelligence, AAAI 2024 |
---|---|
Country/Territory | Canada |
City | Vancouver |
Period | 20/02/24 → 27/02/24 |
Bibliographical note
Publisher Copyright:Copyright © 2024, Association for the Advancement of Artificial Intelligence.