Experiences Acquired in the Design of RoboCup Teams: A Comparison of Two Fielded Teams

Stacy Marsella, Milind Tambe, Jafar Adibi, Yaser Al-Onaizan, Gal A. Kaminka, Ion Muslea

Research output: Contribution to journalArticlepeer-review

8 Scopus citations


Increasingly, multi-agent systems are being designed for a variety of complex, dynamic domains. Effective agent interactions in such domains raise some of the most fundamental research challenges for agent-based systems, in teamwork, multi-agent learning and agent modelling. The RoboCup research initiative, particularly the simulation league, has been proposed to pursue such multi-agent research challenges, using the common testbed of simulation soccer. Despite the significant popularity of RoboCup within the research community, general lessons have not often been extracted from participation in RoboCup. This is what we attempt to do here. We have fielded two teams, ISIS97 and ISIS98, in RoboCup competitions. These teams have been in the top four teams in these competitions. We compare the teams, and attempt to analyze and generalize the lessons learned. This analysis reveals several surprises, pointing out lessons for teamwork and for multi-agent learning.

Original languageEnglish
Pages (from-to)115-129
Number of pages15
JournalAutonomous Agents and Multi-Agent Systems
Issue number1-2
StatePublished - 2001
Externally publishedYes

Bibliographical note

Funding Information:
This research is supported in part by NSF grant IRI-9711665, and in part by a generous gift from the Intel Corporation.


  • Agent learning
  • Multi-agents
  • RoboCup soccer
  • Teamwork


Dive into the research topics of 'Experiences Acquired in the Design of RoboCup Teams: A Comparison of Two Fielded Teams'. Together they form a unique fingerprint.

Cite this