Abstract
We present detailed observations of ZTF18abukavn (SN2018gep), discovered in high-cadence data from the Zwicky Transient Facility as a rapidly rising (1.4 ± 0.1 mag hr-1) and luminous (Mg,peak = -20 mag) transient. It is spectroscopically classified as a broad-lined stripped-envelope supernova (Ic-BL SN). The high peak luminosity (Lbol ≳ 3 × 1044 erg s-1), the short rise time (trise = 3 days in g band), and the blue colors at peak (g-r ∼ -0.4) all resemble the high-redshift Ic-BL iPTF16asu, as well as several other unclassified fast transients. The early discovery of SN2018gep (within an hour of shock breakout) enabled an intensive spectroscopic campaign, including the highest-temperature (Teff ≳ 40,000 K) spectra of a stripped-envelope SN. A retrospective search revealed luminous (Mg ∼ Mr ≈ mag) emission in the days to weeks before explosion, the first definitive detection of precursor emission for a Ic-BL. We find a limit on the isotropic gamma-ray energy release E γ,iso < 4.9 × 10 48 erg, a limit on X-ray emission LX < 1040 erg s-1, and a limit on radio emission ν Lν ≲ 1037 erg s-1. Taken together, we find that the early (< 10 days) data are best explained by shock breakout in a massive shell of dense circumstellar material (0.02 M⊙) at large radii (3 × 1014 cm) that was ejected in eruptive pre-explosion mass-loss episodes. The late-time (> 10 days) light curve requires an additional energy source, which could be the radioactive decay of Ni-56.
Original language | English |
---|---|
Article number | 169 |
Journal | Astrophysical Journal |
Volume | 887 |
Issue number | 2 |
DOIs | |
State | Published - 20 Dec 2019 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2019. The American Astronomical Society. All rights reserved.
Funding
Funders | Funder number |
---|---|
Not added | |
National Science Foundation | 1440341, 1144469, 1106171 |
Horizon 2020 Framework Programme | 725161, 794467 |
Science and Technology Facilities Council | ST/P006892/1 |