TY - JOUR
T1 - Estimation of dependence between paired correlated failure times in the presence of covariate measurement error
AU - Gorfine, Malka
AU - Hsu, Li
AU - Prentice, Ross L.
PY - 2003
Y1 - 2003
N2 - In many biomedical studies, covariates are subject to measurement error. Although it is well known that the regression coefficients estimators can be substantially biased if the measurement error is not accommodated, there has been little study of the effect of covariate measurement error on the estimation of the dependence between bivariate failure times. We show that the dependence parameter estimator in the Clayton-Oakes model can be considerably biased if the measurement error in the covariate is not accommodated. In contrast with the typical bias towards the null for marginal regression coefficients, the dependence parameter can be biased in either direction. We introduce a bias reduction technique for the bivariate survival function in copula models while assuming an additive measurement error model and replicated measurement for the covariates, and we study the large and small sample properties of the dependence parameter estimator proposed.
AB - In many biomedical studies, covariates are subject to measurement error. Although it is well known that the regression coefficients estimators can be substantially biased if the measurement error is not accommodated, there has been little study of the effect of covariate measurement error on the estimation of the dependence between bivariate failure times. We show that the dependence parameter estimator in the Clayton-Oakes model can be considerably biased if the measurement error in the covariate is not accommodated. In contrast with the typical bias towards the null for marginal regression coefficients, the dependence parameter can be biased in either direction. We introduce a bias reduction technique for the bivariate survival function in copula models while assuming an additive measurement error model and replicated measurement for the covariates, and we study the large and small sample properties of the dependence parameter estimator proposed.
KW - Bivariate survival model
KW - Censored data
KW - Copula models
KW - Mismeasured covariates
KW - Proportional hazards model
KW - Replication data
UR - http://www.scopus.com/inward/record.url?scp=0042672860&partnerID=8YFLogxK
U2 - 10.1111/1467-9868.00407
DO - 10.1111/1467-9868.00407
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:0042672860
SN - 1369-7412
VL - 65
SP - 643
EP - 661
JO - Journal of the Royal Statistical Society. Series B: Statistical Methodology
JF - Journal of the Royal Statistical Society. Series B: Statistical Methodology
IS - 3
ER -