Essentially iso-retractable modules and rings

A. K. Chaturvedi, S. Kumar, S. Prakash, N. Kumar

Research output: Contribution to journalArticlepeer-review

Abstract

A.K. Chaturvedi et al. (2021) call a module M essentially iso-retractable if for every essential submodule N of M there exists an isomorphism f: M → N. We characterize essentially iso-retractable modules, co-semisimple modules (V-rings), principal right ideal domains, simple modules and semisimple modules. Over a Noetherian ring, we prove that every essentially iso-retractable module is isomorphic to a direct sum of uniform submodules.

Original languageEnglish
Pages (from-to)76-85
Number of pages10
JournalCarpathian Mathematical Publications
Volume14
Issue number1
DOIs
StatePublished - 2022
Externally publishedYes

Bibliographical note

Publisher Copyright:
© Chaturvedi A.K., Kumar S., Prakash S., Kumar N., 2022.

Keywords

  • essentially compressible module
  • essentially iso-retractable module
  • iso-retractable module
  • retractable module

Fingerprint

Dive into the research topics of 'Essentially iso-retractable modules and rings'. Together they form a unique fingerprint.

Cite this