TY - JOUR
T1 - Epitaxial two dimensional aluminum films on silicon (111) by ultra-fast thermal deposition
AU - Levine, Igal
AU - Yoffe, Alexander
AU - Salomon, Adi
AU - Li, Wenjie
AU - Feldman, Yishay
AU - Vilan, Ayelet
PY - 2012/6/15
Y1 - 2012/6/15
N2 - Aluminum thin films are known for their extremely rough surface, which is detrimental for applications such as molecular electronics and photonics, where protrusions cause electrical shorts or strong scattering. We achieved atomically flat Al films using a highly non-equilibrium approach. Ultra-fast thermal deposition (UFTD), at rates >10 nm/s, yields RMS roughness of 0.4 to 0.8 nm for 30-50 nm thick Al films on variety of substrates. For UFTD on Si(111) substrates, the top surface follows closely the substrate topography (etch pits), indicating a 2D, layer-by-layer growth. The Al film is a mixture of (100) and (111) grains, where the latter are commensurate with the in-plane orientation of the underlying Si (epitaxy). We show the use of these ultra-smooth Al films for highly reproducible charge-transport measurements across a monolayer of alkyl phosphonic acid as well as for plasmonics applications by directly patterning them by focused ion beam to form a long-range ordered array of holes. UFTD is a one-step process, with no need for annealing, peeling, or primer layers. It is conceptually opposite to high quality deposition methods, such as MBE or ALD, which are slow and near-equilibrium processes. For Al, though, we find that limited diffusion length (and good wetting) is critical for achieving ultra-smooth thin films.
AB - Aluminum thin films are known for their extremely rough surface, which is detrimental for applications such as molecular electronics and photonics, where protrusions cause electrical shorts or strong scattering. We achieved atomically flat Al films using a highly non-equilibrium approach. Ultra-fast thermal deposition (UFTD), at rates >10 nm/s, yields RMS roughness of 0.4 to 0.8 nm for 30-50 nm thick Al films on variety of substrates. For UFTD on Si(111) substrates, the top surface follows closely the substrate topography (etch pits), indicating a 2D, layer-by-layer growth. The Al film is a mixture of (100) and (111) grains, where the latter are commensurate with the in-plane orientation of the underlying Si (epitaxy). We show the use of these ultra-smooth Al films for highly reproducible charge-transport measurements across a monolayer of alkyl phosphonic acid as well as for plasmonics applications by directly patterning them by focused ion beam to form a long-range ordered array of holes. UFTD is a one-step process, with no need for annealing, peeling, or primer layers. It is conceptually opposite to high quality deposition methods, such as MBE or ALD, which are slow and near-equilibrium processes. For Al, though, we find that limited diffusion length (and good wetting) is critical for achieving ultra-smooth thin films.
UR - http://www.scopus.com/inward/record.url?scp=84863523896&partnerID=8YFLogxK
U2 - 10.1063/1.4730411
DO - 10.1063/1.4730411
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:84863523896
SN - 0021-8979
VL - 111
JO - Journal of Applied Physics
JF - Journal of Applied Physics
IS - 12
M1 - 124320
ER -